

DIGITAL NOTES
ON

DISTRIBUTED SYSTEMS
(R17A0522)

B.TECH III YEAR - II SEM

(2019-20)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

III Year B. Tech. IT–II Sem L T/P/D C

 3 1/- / - 3

(R17A0522) DISTRIBUTED SYSTEMS

Objectives:

• To learn the principles, architectures, algorithms and programming models used in

distributed systems.

• To examine state-of-the-art distributed systems, such as Google File System.

• To design and implement sample distributed systems.

UNIT I

Characterization of Distributed Systems: Introduction, Examples of Distributed systems,

Resource sharing and web, challenges.

System Models: Introduction, Architectural and Fundamental models.

UNIT II

Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing

physical clocks, Logical time and Logical clocks, Global states

Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast

Communication, Consensus and Related problems.

UNIT III

Inter Process Communication: Introduction, Characteristics of Interprocess communication,

External Data Representation and Marshalling,Client-Server Communication, Group

Communication, Case Study: IPC in UNIX.

Distributed Objects and Remote Invocation: Introduction, Communication between

Distributed Objects, Remote Procedure Call, Events and Notifications, Case study-Java RMI.

UNIT IV

Distributed File Systems: Introduction, File service Architecture, Case Study1: Sun Network

File System, Case Study 2: The Andrew File System.

Distributed Shared Memory: Introduction Design and Implementation issues,consistency

models.

UNIT V

Transactions and Concurrency Control: Introduction, Transactions, Nested Transactions,

Locks, Optimistic concurrency control, Timestamp ordering, Comparison of methods for

concurrency control.

Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic

commit protocols, Concurrency control in distributed transactions, Distributed deadlocks,

Transaction recovery

TEXT BOOK:

Distributed Systems, Concepts and Design, George Coulouris, J Dollimore and Tim Kindberg,

Pearson Education, 4th Edition,2009.

REFERENCES:

1. Distributed Systems, Principles and paradigms, Andrew S.Tanenbaum, Maarten Van

Steen, Second Edition, PHI.

2. Distributed Systems, An Algorithm Approach, Sikumar Ghosh, Chapman & Hall/CRC,

Taylor & Fransis Group, 2007.

 Course Outcomes:

1. Able to compare different types of distributed systems and different models.

2. Able to analyze the algorithms of mutual exclusion, election & multicast

communication.

3. Able to evaluate the different mechanisms for Interprocess communication and remote

invocations.

4. Able to design and develop new distributed applications.

5. Able to apply transactions and concurrency control mechanisms in different distributed

environments.

 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

 DEPARTMENT OF INFORMATION TECHNOLOGY

INDEX

S. No

Unit
Topic Page no

1

I Characterization of Distributed Systems 5-14

2

I System Models 14-29

3

II Time and Global States 30-44

4

II Coordination and Agreement 44-61

5

III Inter Process Communication 62-80

6

III Distributed Objects and Remote Invocation 81-116

7

IV Distributed File Systems 117-128

8

IV Name Services 128-145

10

IV Distributed Shared Memory 145-154

11

V Transactions and Concurrency Control 155-199

12

V Distributed Transactions 199-213

Distributed Systems Page 5

UNIT I

Characterization of Distributed Systems: Introduction, Examples of Distributed systems, Resource sharing

and web, challenges.

System Models: Introduction, Architectural and Fundamental models.

Introduction

A distributed system is a software system in which components located on networked

computers communicate and coordinate their actions by passing messages. The components

interact with each other in order to achieve a common goal.

Distributed systems Principles

A distributed system consists of a collection of autonomous computers, connected

through a network and distribution middleware, which enables computers to coordinate their

activities and to share the resources of the system, so that users perceive the system as a single,

integrated computing facility.

Centralised System Characteristics

• One component with non-autonomous parts

• Component shared by users all the time

• All resources accessible

• Software runs in a single process

• Single Point of control

• Single Point of failure

Distributed System Characteristics

• Multiple autonomous components

• Components are not shared by all users

• Resources may not be accessible

• Software runs in concurrent processes on different processors

• Multiple Points of control

• Multiple Points of failure

Examples of distributed systems and applications of distributed computing include the following:

• telecommunication networks:

• telephone networks and cellular networks,

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Cellular_network

Distributed Systems Page 6

• computer networks such as the Internet,

• wireless sensor networks,

• routing algorithms;

• twork applications:

• World wide web and peer-to-peer networks,

• massively multiplayer online games and virtual reality communities,

• distributed databases and distributed database management systems,

• network file systems,

• distributed information processing systems such as banking systems and airline reservation

systems;

• real-time process control:

• aircraft control systems,

• industrial control systems;

• parallel computation:

• scientific computing, including cluster computing and grid computing and various volunteer

computing projects (see the list of distributed computing projects),

• distributed rendering in computer graphics.

RESOURCE SHARING

• Is the primary motivation of distributed computing

• Resources types

– Hardware, e.g. printer, scanner, camera

– Data, e.g. file, database, web page

– More specific functionality, e.g. search engine, file

• Service

– manage a collection of related resources and present their functionalities to users

and applications

• Server

– a process on networked computer that accepts requests from processes on other

computers to perform a service and responds appropriately

• Client

– the requesting process

• Remote invocation

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Routing_algorithm
https://en.wikipedia.org/wiki/World_wide_web
https://en.wikipedia.org/wiki/Peer-to-peer_network
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Virtual_reality
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_database_management_system
https://en.wikipedia.org/wiki/Distributed_file_system
https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Parallel_computation
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Volunteer_computing
https://en.wikipedia.org/wiki/List_of_distributed_computing_projects
https://en.wikipedia.org/wiki/Distributed_rendering

Distributed Systems Page 7

THE CHALLENGES IN DISTRIBUTED SYSTEM:

Heterogeneity

The Internet enables users to access services and run applications over a heterogeneous

collection of computers and networks. Heterogeneity (that is, variety and difference) applies to

all of the following:

• networks;

• computer hardware;

• operating systems;

• programming languages;

• implementations by different developers

Although the Internet consists of many different sorts of network, their differences are masked

by the fact that all of the computers attached to them use the Internet protocols to communicate

with one another. For example, a computer attached to an Ethernet has an implementation of the

Internet protocols over the Ethernet, whereas a computer on a different sort of network will need

an implementation of the Internet protocols for that network.

Data types such as integers may be represented in different ways on different sorts of hardware –

for example, there are two alternatives for the byte ordering of integers. These differences in

representation must be dealt with if messages are to be exchanged between programs running on

different hardware. Although the operating systems of all computers on the Internet need to

include an implementation of the Internet protocols, they do not necessarily all provide the same

application programming interface to these protocols. For example, the calls for exchanging

messages in UNIX are different from the calls in Windows.

Different programming languages use different representations for characters and data structures

such as arrays and records. These differences must be addressed if programs written in different

languages are to be able to communicate with one another. Programs written by different

developers cannot communicate with one another

unless they use common standards, for example, for network communication and the

representation of primitive data items and data structures in messages. For this to happen,

standards need to be agreed and adopted – as have the Internet protocols.

Distributed Systems Page 8

Middleware • The term middleware applies to a software layer that provides a programming

abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating

systems and programming languages. The Common Object Request Broker (CORBA), is an

example. Some middleware, such as Java Remote Method Invocation (RMI), supports only a

single programming language. Most middleware is implemented over the Internet protocols,

which themselves mask the differences of the underlying networks, but all middleware deals

with the differences in operating systems and hardware.

Heterogeneity and mobile code • The term mobile code is used to refer to program code that

can be transferred from one computer to another and run at the destination – Java applets are an

example. Code suitable for running on one computer is not necessarily suitable for running on

another because executable programs are normally specific both to the instruction set and to the

host operating system.

The virtual machine approach provides a way of making code executable on a variety of host

computers: the compiler for a particular language generates code for a virtual machine instead of

 particular hardware order code. For example, the Java compiler produces code for a Java

virtual machine, which executes it by interpretation.

The Java virtual machine needs to be implemented once for each type of computer to enable Java

programs to run.

Today, the most commonly used form of mobile code is the inclusion Javascript programs in

some web pages loaded into client browsers.

Openness

The openness of a computer system is the characteristic that determines whether the system can

be extended and reimplemented in various ways. The openness of distributed systems is

determined primarily by the degree to which new resource-sharing services can be added and be

made available for use by a variety of client programs.

Openness cannot be achieved unless the specification and documentation of the key software

interfaces of the components of a system are made available to software developers. In a word,

the key interfaces are published. This process is akin to the standardization of interfaces, but it

often bypasses official standardization procedures,

which are usually cumbersome and slow-moving. However, the publication of interfaces is only

the starting point for adding and extending services in a distributed system. The challenge to

designers is to tackle the complexity of distributed systems consisting of many components

Distributed Systems Page 9

engineered by different people. The designers of the Internet protocols introduced a series of

documents called ‘Requests For Comments’, or RFCs, each of which is known by a number. The

specifications of the Internet communication protocols were published in this series in the early

1980s, followed by specifications for applications that run over them, such as file transfer, email

and telnet by the mid-1980s.

Systems that are designed to support resource sharing in this way are termed open distributed

systems to emphasize the fact that they are extensible. They may be extended at the hardware

level by the addition of computers to the network and at the software level by the introduction of

new services and the reimplementation of old ones, enabling application programs to share

resources.

To summarize:

• Open systems are characterized by the fact that their key interfaces are published.

• Open distributed systems are based on the provision of a uniform communication mechanism

and published interfaces for access to shared resources.

• Open distributed systems can be constructed from heterogeneous hardware and software,

possibly from different vendors. But the conformance of each component to the published

standard must be carefully tested and verified if the system is to work correctly.

Security

Many of the information resources that are made available and maintained in distributed systems

have a high intrinsic value to their users. Their security is therefore of considerable importance.

Security for information resources has three components: confidentiality (protection against

disclosure to unauthorized individuals), integrity(protection against alteration or corruption), and

availability (protection against interference with the means to access the resources).

In a distributed system, clients send requests to access data managed by servers, which involves

sending information in messages over a network. For example:

1. A doctor might request access to hospital patient data or send additions to that data.

2. In electronic commerce and banking, users send their credit card numbers across the Internet.

In both examples, the challenge is to send sensitive information in a message over a network in a

secure manner. But security is not just a matter of concealing the contents of messages – it also

involves knowing for sure the identity of the user or other agent on whose behalf a message was

sent.However, the following two security challenges have not yet been fully met:

Denial of service attacks: Another security problem is that a user may wish to disrupt a service

Distributed Systems Page 10

for some reason. This can be achieved by bombarding the service with such a large number of

pointless requests that the serious users are unable to use it. This is called a denial of service

attack. There have been several denial of service attacks on well-known web services. Currently

such attacks are countered by attempting to catch and punish the perpetrators after the event, but

that is not a general solution to the problem.

Security of mobile code: Mobile code needs to be handled with care. Consider someone who

receives an executable program as an electronic mail attachment: the possible effects of running

the program are unpredictable; for example, it may seem to display an interesting picture but in

reality it may access local resources, or perhaps be part of a denial of service attack.

Scalability

Distributed systems operate effectively and efficiently at many different scales, ranging from a

small intranet to the Internet. A system is described as scalable if it will remain effective when

there is a significant increase in the number of resources and the number of users. The number of

computers and servers in the Internet has increased dramatically. Figure 1.6 shows the increasing

number of computers and web servers during the 12-year history of the Web up to 2005

[zakon.org]. It is interesting to note the significant growth in both computers and web servers in

this period, but also that the relative percentage is flattening out – a trend that is explained by the

growth of fixed and mobile personal computing. One web server may also increasingly be hosted

on multiple computers.

The design of scalable distributed systems presents the following challenges:

Controlling the cost of physical resources: As the demand for a resource grows, it should be

possible to extend the system, at reasonable cost, to meet it. For example, the frequency with

which files are accessed in an intranet is likely to grow as the number of users and computers

increases. It must be possible to add server computers to avoid the performance bottleneck that

would arise if a single file server had to handle all file access requests. In general, for a system

with n users to be scalable, the quantity of physical resources required to support them should be

at most O(n) – that is, proportional to n. For example, if a single file server can support 20 users,

then two such servers should be able to support 40 users.

Controlling the performance loss: Consider the management of a set of data whose size is

proportional to the number of users or resources in the system – for example, the table with the

correspondence between the domain names of computers and their Internet addresses held by the

Domain Name System, which is used mainly to look

up DNS names such as www.amazon.com. Algorithms that use hierarchic structures scale better

http://www.amazon.com/

Distributed Systems Page 11

than those that use linear structures. But even with hierarchic structures an increase in size will

result in some loss in performance: the time taken to access hierarchically structured data is

O(log n), where n is the size of the set of data. For a

system to be scalable, the maximum performance loss should be no worse than this.

Preventing software resources running out: An example of lack of scalability is shown by the

numbers used as Internet (IP) addresses (computer addresses in the Internet). In the late 1970s, it

was decided to use 32 bits for this purpose, but as will be explained in Chapter 3, the supply of

available Internet addresses is running out. For this reason, a new version of the protocol with

128-bit Internet addresses is being adopted, and this will require modifications to many software

components.

Avoiding performance bottlenecks: In general, algorithms should be decentralized to avoid

having performance bottlenecks. We illustrate this point with reference to the predecessor of the

Domain Name System, in which the name table was kept in a single master file that could be

downloaded to any computers that needed it. That was

fine when there were only a few hundred computers in the Internet, but it soon became a serious

performance and administrative bottleneck.

Failure handling

Computer systems sometimes fail. When faults occur in hardware or software, programs may

produce incorrect results or may stop before they have completed the intended computation.

Failures in a distributed system are partial – that is, some components fail while others continue

to function. Therefore the handling of failures is particularly difficult.

Detecting failures: Some failures can be detected. For example, checksums can be used to detect

corrupted data in a message or a file. It is difficult or even impossible to detect some other

Distributed Systems Page 12

failures, such as a remote crashed server in the Internet. The challenge is to manage in the

presence of failures that cannot be detected but may be suspected.

Masking failures: Some failures that have been detected can be hidden or made less severe. Two

examples of hiding failures:

1. Messages can be retransmitted when they fail to arrive.

2. File data can be written to a pair of disks so that if one is corrupted, the other may still be

correct.

Tolerating failures: Most of the services in the Internet do exhibit failures – it would not be

practical for them to attempt to detect and hide all of the failures that might occur in such a large

network with so many components. Their clients can be designed to tolerate failures, which

generally involves the users tolerating them as well. For example, when a web browser cannot

contact a web server, it does not make the user wait for ever while it keeps on trying – it informs

the user about the problem, leaving them free to try again later. Services that tolerate failures are

discussed in the paragraph on redundancy below.

Recovery from failures: Recovery involves the design of software so that the state of permanent

data can be recovered or ‘rolled back’ after a server has crashed. In general, the computations

performed by some programs will be incomplete when a fault occurs, and the permanent data

that they update (files and other material stored

in permanent storage) may not be in a consistent state.

Redundancy: Services can be made to tolerate failures by the use of redundant components.

Consider the following examples:

1. There should always be at least two different routes between any two routers in the Internet.

2. In the Domain Name System, every name table is replicated in at least two different servers.

3. A database may be replicated in several servers to ensure that the data remains accessible after

the failure of any single server; the servers can be designed to detect faults in their peers; when a

fault is detected in one server, clients are redirected to the remaining servers.

Concurrency

Both services and applications provide resources that can be shared by clients in a distributed

system. There is therefore a possibility that several clients will attempt to access a shared

resource at the same time. For example, a data structure that records bids for an auction may be

accessed very frequently when it gets close to the deadline time. The process that manages a

shared resource could take one client request at a time. But that approach limits throughput.

Distributed Systems Page 13

Therefore services and applications generally allow multiple client requests to be processed

concurrently. To make this more concrete, suppose that each resource is encapsulated as an

object and that invocations are executed in concurrent threads. In this case it is possible that

several threads may be executing concurrently within an object, in which case their operations on

the object may conflict with one another and produce inconsistent results.

Transparency

Transparency is defined as the concealment from the user and the application programmer of the

separation of components in a distributed system, so that the system is perceived as a whole

rather than as a collection of independent components. The implications of transparency are a

major influence on the design of the system software.

Access transparency enables local and remote resources to be accessed using identical

operations.

Location transparency enables resources to be accessed without knowledge of their physical or

network location (for example, which building or IP address).

Concurrency transparency enables several processes to operate concurrently using shared

resources without interference between them.

Replication transparency enables multiple instances of resources to be used to increase reliability

and performance without knowledge of the replicas by users or application programmers.

Failure transparency enables the concealment of faults, allowing users and application programs

to complete their tasks despite the failure of hardware or software components.

Mobility transparency allows the movement of resources and clients within a system without

affecting the operation of users or programs.

Performance transparency allows the system to be reconfigured to improve performance as

loads vary.

Scaling transparency allows the system and applications to expand in scale without change to the

system structure or the application algorithms.

Quality of service

Once users are provided with the functionality that they require of a service, such as the file

service in a distributed system, we can go on to ask about the quality of the service provided. The

main nonfunctional properties of systems that affect the quality of the service experienced by

clients and users are reliability, security and performance.

Adaptability to meet changing system configurations and resource availability has been

recognized as a further important aspect of service quality.

Distributed Systems Page 14

Some applications, including multimedia applications, handle time-critical data – streams of data

that are required to be processed or transferred from one process to another at a fixed rate. For

example, a movie service might consist of a client program that is retrieving a film from a video

server and presenting it on the user’s screen. For a satisfactory result the successive frames of

video need to be displayed to the user within some specified time limits.

In fact, the abbreviation QoS has effectively been commandeered to refer to the ability of

systems to meet such deadlines. Its achievement depends upon the availability of the necessary

computing and network resources at the appropriate times. This implies a requirement for the

system to provide guaranteed computing and communication resources that are sufficient to

enable applications to complete each task on time (for example, the task of displaying a frame of

video).

INTRODUCTION TO SYSTEM MODELS

Systems that are intended for use in real-world environments should be designed to function

correctly in the widest possible range of circumstances and in the face of many possible

difficulties and threats .

Each type of model is intended to provide an abstract, simplified but consistent description of a

relevant aspect of distributed system design:

Physical models are the most explicit way in which to describe a system; they capture the

hardware composition of a system in terms of the computers (and other devices, such as mobile

phones) and their interconnecting networks.

Architectural models describe a system in terms of the computational and communication tasks

performed by its computational elements; the computational elements being individual

computers or aggregates of them supported by appropriate network interconnections.

Fundamental models take an abstract perspective in order to examine individual aspects of a

distributed system. The fundamental models that examine three important aspects of distributed

systems: interaction models, which consider the structure and sequencing of the communication

between the elements of the system; failure models, which consider the ways in which a system

may fail to operate correctly and; security models, which consider how the system is protected

against attempts to interfere with its correct operation or to steal its data.

Architectural models

The architecture of a system is its structure in terms of separately specified components and their

interrelationships. The overall goal is to ensure that the structure will meet present and likely

future demands on it. Major concerns are to make the system reliable, manageable, adaptable and

Distributed Systems Page 15

cost-effective. The architectural design of a building has similar aspects – it determines not only

its appearance but also its general structure and architectural style (gothic, neo-classical, modern)

and provides a consistent frame of reference for the design.

Software layers

The concept of layering is a familiar one and is closely related to abstraction. In a layered

approach, a complex system is partitioned into a number of layers, with a given layer making use

of the services offered by the layer below. A given layer therefore offers a software abstraction,

with higher layers being unaware of implementation details, or indeed of any other layers beneath

them.

In terms of distributed systems, this equates to a vertical organization of services into service

layers. A distributed service can be provided by one or more server processes, interacting with

each other and with client processes in order to maintain a consistent system-wide view of the

service’s resources. For example, a network time service is implemented on the Internet based on

the Network Time Protocol (NTP) by server processes running on hosts throughout the Internet

that supply the current time to any client that requests it and adjust their version of the current

time as a result of interactions with each other. Given the complexity of distributed systems, it is

often helpful to organize such services into layers. the important terms platform and middleware,

which define as follows:

The important terms platform and middleware, which is defined as follows:

A platform for distributed systems and applications consists of the lowest-level hardware and

software layers. These low-level layers provide services to the layers above them, which are

implemented independently in each computer, bringing the system’s programming interface up

to a level that facilitates communication and coordination between processes. Intel x86/Windows,

Intel x86/Solaris, Intel x86/Mac OS X, Intel x86/Linux and ARM/Symbian are major examples.

– Remote Procedure Calls – Client programs call procedures in server programs

– Remote Method Invocation – Objects invoke methods of objects on distributed hosts

– Event-based Programming Model – Objects receive notice of events in other objects in which

they have interest

Middleware

• Middleware: software that allows a level of programming beyond processes and message

passing

– Uses protocols based on messages between processes to provide its higher-level abstractions

Distributed Systems Page 16

Applications, services

Middleware

Operating system

Computer and networkhardware

– such as remote invocation and events

– Supports location transparency

– Usually uses an interface definition language (IDL) to define interfaces

Interfaces in Programming Languages

– Current PL allow programs to be developed as a set of modules that communicate with each

other. Permitted interact ions between modules are defined by interfaces

– A specified interface can be implemented by different modules without the need to modify

other modules using the interface

• Interfaces in Distributed Systems

– When modules are in different processes or on different hosts there are limitations on the

interactions that can occur. Only actions with parameters that are fully specified and understood can

communicate effectively to request or provide services to modules in another process.

– A service interface allows a client to request and a server to provide particular services

– A remote interface allows objects to be passed as arguments to and results from distributed

modules.

Distributed Systems Page 17

Client invocation invocation
Server

result
Server

result

Client

Computer: Process:
Key:

• Object Interfaces

– An interface defines the signatures of a set of methods, including arguments, argument types,

return values and exceptions. Implementation details are not included in an interface.

A class may implement an interface by specifying behavior for each method in the interface.

Interfaces do not have constructors.

System architectures

Client-server: This is the architecture that is most often cited when distributed systems are

discussed. It is historically the most important and remains the most widely employed. Figure 2.3

illustrates the simple structure in which processes take on the roles of being clients or servers. In

particular, client processes interact with individual server processes in potentially separate host

computers in order to access the shared resources that they manage.

Servers may in turn be clients of other servers, as the figure indicates. For example, a web server

is often a client of a local file server that manages the files in which the web pages are stored.

Web servers and most other Internet services are clients of the DNS service, which translates

Internet domain names to network addresses.

Clients invoke individual servers

Another web-related example concerns search engines, which enable users to look up summaries

of information available on web pages at sites throughout the Internet. These summaries are

made by programs called web crawlers, which run in the background at a search engine site

using HTTP requests to access web servers throughout the Internet. Thus a search engine is both

a server and a client: it responds to queries from browser clients and it runs web crawlers that act

as clients of other web servers. In this example, the server tasks (responding to user queries) and

the crawler tasks (making requests to other web servers) are entirely independent; there is little

Distributed Systems Page 18

need to synchronize them and they may run concurrently. In fact, a typical search engine would

normally include many concurrent threads of execution, some serving its clients and others

running web crawlers. In Exercise 2.5, the reader is invited to consider the only synchronization

issue that does arise for a concurrent search engine of the type outlined here.

Peer-to-peer: In this architecture all of the processes involved in a task or activity play similar

roles, interacting cooperatively as peers without any distinction between client and server

processes or the computers on which they run. In practical terms, all participating processes run

the same program and offer the same set of interfaces to each

other. While the client-server model offers a direct and relatively simple approach to the sharing

of data and other resources, it scales poorly.

A distributed application based on peer processes

Peer 2

Peer 1
Application

Application

Shara

ble

obje

cts

Peer 3

Applicat

ion

Distributed Systems Page 19

A number of placement strategies have evolved in response to this problem, but none of them

addresses the fundamental issue – the need to distribute shared resources much more widely in

order to share the computing and communication loads incurred in accessing them amongst a

much larger number of computers and network links. The key insight that led to the development

of peer-to-peer systems is that the network and computing resources owned by the users of a

service could also be put to use to support that service. This has the useful consequence that the

resources available to run the service grow with the number of users.

Models of systems share some fundamental properties. In particular, all of them are composed of

processes that communicate with one another by sending messages over a computer network. All

of the models share the design requirements of achieving the performance and reliability

characteristics of processes and networks and ensuring the security of the resources in the

system.

About their characteristics and the failures and security risks they might exhibit. In general, such

a fundamental model should contain only the essential ingredients that need to consider in order

to understand and reason about some aspects of a system’s behaviour. The purpose of such a

model is:

• To make explicit all the relevant assumptions about the systems we are modelling.

• To make generalizations concerning what is possible or impossible, given those assumptions.

The generalizations may take the form of general-purpose algorithms or desirable properties that

are guaranteed. The guarantees are

dependent on logical analysis and, where appropriate, mathematical proof.

The aspects of distributed systems that we wish to capture in our fundamental models are

intended to help us to discuss and reason about:

Interaction: Computation occurs within processes; the processes interact by passing messages,

resulting in communication (information flow) and coordination (synchronization and ordering

of activities) between processes. In the analysis and design of distributed systems we are

concerned especially with these interactions. The interaction model must reflect the facts that

communication takes place with delays that are often of considerable duration, and that the

accuracy with which independent processes can be coordinated is limited by these delays and by

the difficulty of maintaining the same notion of time across all the computers in a distributed

system.

Distributed Systems Page 20

Failure: The correct operation of a distributed system is threatened whenever a fault occurs in

any of the computers on which it runs (including software faults) or in the network that connects

them. Our model defines and classifies the faults. This provides a basis for the analysis of their

potential effects and for the design of systems that are able to tolerate faults of each type while

continuing to run correctly.

Security: The modular nature of distributed systems and their openness exposes them to attack

by both external and internal agents. Our security model defines and classifies the forms that

such attacks may take, providing a basis for the analysis of threats to a system and for the design

of systems that are able to resist them.

 Fundamental Models

Interaction model

Fundamentally distributed systems are composed of many processes, interacting in complex

ways. For example:

• Multiple server processes may cooperate with one another to provide a service; the

examples mentioned above were the Domain Name System, which partitions and

replicates its data at servers throughout the Internet, and Sun’s Network Information

Service, which keeps replicated copies of password files at several servers in a local area

network.

• A set of peer processes may cooperate with one another to achieve a common goal: for

example, a voice conferencing system that distributes streams of audio data in a similar

manner, but with strict real-time constraints.

Most programmers will be familiar with the concept of an algorithm – a sequence of

steps to be taken in order to perform a desired computation. Simple programs are controlled by

algorithms in which the steps are strictly sequential. The behaviour of the program and the state

of the program’s variables is determined by them. Such a program is executed as a single

process. Distributed systems composed of multiple processes such as those outlined above are

more complex. Their behaviour and state can be described by a distributed algorithm – a

definition of the steps to be taken by each of the processes of which the system is composed,

including the transmission of messages between them. Messages are transmitted between

processes to transfer information between them and to coordinate their activity.

Two significant factors affecting interacting processes in a distributed system:

Distributed Systems Page 21

• Communication performance is often a limiting characteristic.

• It is impossible to maintain a single global notion of time.

Performance of communication channels • The communication channels in our model are

realized in a variety of ways in distributed systems – for example, by an implementation of

streams or by simple message passing over a computer network. Communication over a

computer network has the following performance characteristics relating to latency, bandwidth

and jitter:

The delay between the start of a message’s transmission from one process and the beginning of

its receipt by another is referred to as latency. The latency includes:

– The time taken for the first of a string of bits transmitted through a network to reach its

destination. For example, the latency for the transmission of a message through a satellite link is

the time for a radio signal to travel to the satellite and back.

– The delay in accessing the network, which increases significantly when the network is heavily

loaded. For example, for Ethernet transmission the sending station waits for the network to be

free of traffic.

– The time taken by the operating system communication services at both the sending and the

receiving processes, which varies according to the current load on the operating systems.

• The bandwidth of a computer network is the total amount of information that can be

transmitted over it in a given time. When a large number of communication channels are using

the same network, they have to share the available bandwidth.

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is relevant to

multimedia data. For example, if consecutive samples of audio data are played with differing

time intervals, the sound will be badly distorted.

Computer clocks and timing events • Each computer in a distributed system has its own

internal clock, which can be used by local processes to obtain the value of the current time.

Therefore two processes running on different computers can each associate timestamps with their

events. However, even if the two processes read their clocks at the same time, their local clocks

may supply different time values. This is because computer clocks drift from perfect time and,

more importantly, their drift rates differ from one another. The term clock drift rate refers to the

rate at which a computer clock deviates from a perfect reference clock. Even if the clocks on all

the computers in a distributed system are set to the same time initially, their clocks will

Distributed Systems Page 22

eventually vary quite significantly unless corrections are applied.

Two variants of the interaction model • In a distributed system it is hard to set limits on the

time that can be taken for process execution, message delivery or clock drift. Two opposing

extreme positions provide a pair of simple models – the first has a strong assumption of time and

the second makes no assumptions about time:

Synchronous distributed systems: Hadzilacos and Toueg define a synchronous distributed system

to be one in which the following bounds are defined:

• The time to execute each step of a process has known lower and upper bounds.

• Each message transmitted over a channel is received within a known bounded time.

• Each process has a local clock whose drift rate from real time has a known bound.

Asynchronous distributed systems: Many distributed systems, such as the Internet, are very

useful without being able to qualify as synchronous systems. Therefore we need an alternative

model. An asynchronous distributed system is one in which there are no bounds on:

• Process execution speeds – for example, one process step may take only a picosecond and

another a century; all that can be said is that each step may take an arbitrarily long time.

• Message transmission delays – for example, one message from process A to process B may be

delivered in negligible time and another may take several years. In other words, a message may

be received after an arbitrarily long time.

• Clock drift rates – again, the drift rate of a clock is arbitrary.

ordering • In many cases, we are interested in knowing whether an event (sending or receiving a

message) at one process occurred before, after or concurrently with another event at another

process. The execution of a system can be described in terms of events and their ordering despite

the lack of accurate clocks. For example, consider the following set of exchanges between a

group of email users, X, Y, Z and A, on a mailing list:

1. User X sends a message with the subject Meeting.

2. Users Y and Z reply by sending a message with the subject Re: Meeting.

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s

message and Y’s reply and sends another reply, which references both X’s and Y’s

messages. But due to the independent delays in message delivery, the messages may be delivered

as shown in the following figure and some users may view these two messages in the wrong

order.

Distributed Systems Page 23

1 4
m send

1
m2

receive
2 3

recei

 ve

send

receive receive

send

X

receive receive

Y Physic

al

time

Zm1 m2

A receive receive receive

t1 t2 t3

Distributed Systems Page 24

send m

receive

Failure model

In a distributed system both processes and communication channels may fail – that is, they may

depart from what is considered to be correct or desirable behaviour. The failure model defines

the ways in which failure may occur in order to provide an understanding of the effects of

failures. Hadzilacos and Toueg provide a taxonomy that distinguishes between the failures of

processes and communication channels. These are presented under the headings omission

failures, arbitrary failures and timing failures.

Omission failures • The faults classified as omission failures refer to cases when a process or

communication channel fails to perform actions that it is supposed to do.

Process omission failures: The chief omission failure of a process is to crash. When, say that a

process has crashed we mean that it has halted and will not execute any further steps of its

program ever. The design of services that can survive in the presence of faults can be simplified

if it can be assumed that the services on which they depend crash cleanly – that is, their

processes either function correctly or else stop. Other processes may be able to detect such a

crash by the fact that the process repeatedly fails to respond to invocation messages. However,

this method of crash detection relies on the use of timeouts – that is, a method in which one

process allows a fixed period of time forsomething to occur. In an asynchronous system a

timeout can indicate only that a process is not responding – it may have crashed or may be slow,

or the messages may not have arrived.

Communication omission failures: Consider the communication primitives send and receive. A

process p performs a send by inserting the message m in its outgoing message buffer. The

communication channel transports m to q’s incoming message buffer. Process q performs a

receive by taking m from its incoming message buffer and delivering it. The outgoing and

incoming message buffers are typically provided by the operating system.

processp process q

Outgoingmessagebuffer Incomingmessagebuffer

Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst

Communication channel

Distributed Systems Page 25

possible failure semantics, in which any type of error may occur. For example, a process may set

wrong values in its data items, or it may return a wrong value in response to an invocation.

An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps or

takes unintended processing steps. Arbitrary failures in processes cannot be detected by seeing

whether the process responds to invocations, because it might arbitrarily omit to reply.

Communication channels can suffer from arbitrary failures; for example, message contents may

be corrupted, nonexistent messages may be delivered or real messages may be delivered more

than once. Arbitrary failures of communication channels are rare because the communication

software is able to recognize them and reject the faulty

messages. For example, checksums are used to detect corrupted messages, and message

sequence numbers can be used to detect nonexistent and duplicated messages.

Timing failures • Timing failures are applicable in synchronous distributed systems where time

limits are set on process execution time, message delivery time and clock drift rate. Timing

failures are listed in the following figure. Any one of these failures may result in responses being

unavailable to clients within a specified time interval.

In an asynchronous distributed system, an overloaded server may respond too slowly, but we

cannot say that it has a timing failure since no guarantee has been offered. Real-time operating

systems are designed with a view to providing timing guarantees, but they are more complex to

design and may require redundant hardware.

Most general-purpose operating systems such as UNIX do not have to meet real-time constraints.

Masking failures • Each component in a distributed system is generally constructed from a

collection of other components. It is possible to construct reliable services from components that

Distributed Systems Page 26

exhibit failures. For example, multiple servers that hold replicas of data can continue to provide a

service when one of them crashes. A knowledge of the failure characteristics of a component can

enable a new service to be designed to mask the failure of the components on which it depends.

A service masks a failure either by hiding it altogether or by converting it into a more acceptable

type of failure. For an example of the latter, checksums are used to mask corrupted messages,

effectively converting an arbitrary failure into an omission failure. The omission failures can be

hidden by using a protocol that retransmits messages that do not arrive at their destination. Even

process crashes may be masked, by replacing the process and restoring its memory from

information stored on disk by its predecessor.

Reliability of one-to-one communication • Although a basic communication channel can

exhibit the omission failures described above, it is possible to use it to build a communication

service that masks some of those failures.

The term reliable communication is defined in terms of validity and integrity as follows:

Validity: Any message in the outgoing message buffer is eventually delivered to the incoming

message buffer.

Integrity: The message received is identical to one sent, and no messages are delivered twice.

The threats to integrity come from two independent sources:

• Any protocol that retransmits messages but does not reject a message that arrives twice.

Protocols can attach sequence numbers to messages so as to detect those that are delivered twice.

• Malicious users that may inject spurious messages, replay old messages or tamper with

messages. Security measures can be taken to maintain the integrity property in the face of such

attacks.

Security model

The sharing of resources as a motivating factor for distributed systems, and in Section 2.3 we

described their architecture in terms of processes, potentially encapsulating higher-level

abstractions such as objects, components or services, and providing access to them through

interactions with other processes. That architectural model provides the basis for our security

model:

the security of a distributed system can be achieved by securing the processes and the channels

Distributed Systems Page 27

used for their interactions and by protecting the objects that they encapsulate against

unauthorized access.

Protection is described in terms of objects, although the concepts apply equally well to resources

of all types

Protecting objects :

Server that manages a collection of objects on behalf of some users. The users can run client

programs that send invocations to the server to perform operations on the objects. The server

carries out the operation specified in each invocation and sends the result to the client.

Objects are intended to be used in different ways by different users. For example, some objects

may hold a user’s private data, such as their mailbox, and other objects may hold shared data

such as web pages. To support this, access rights specify who is allowed to perform the

operations of an object – for example, who is allowed to read or to write its state.

Principal (user) Network Principal (server)

Securing processes and their interactions • Processes interact by sending messages. The

messages are exposed to attack because the network and the communication service that they use

are open, to enable any pair of processes to interact. Servers and peer processes expose their

interfaces, enabling invocations to be sent to them by any other process.

The enemy • To model security threats, we postulate an enemy (sometimes also known as the

adversary) that is capable of sending any message to any process and reading or copying any

message sent between a pair of processes, as shown in the following figure. Such attacks can be

made simply by using a computer connected to a network to run a program that reads network

messages addressed to other computers on the network, or a program that generates messages

that make false requests to services, purporting to come from authorized users. The attack may

Access rights Object

invocation

Client

result Server

Distributed Systems Page 28

come from a computer that is legitimately connected to the network or from one that is

connected in an unauthorized manner. The threats from a potential enemy include threats to

processes and threats to communication channels.

Defeating security threats

Cryptography and shared secrets: Suppose that a pair of processes (for example, a particular

client and a particular server) share a secret; that is, they both know the secret but no other

process in the distributed system knows it. Then if a message exchanged by that pair of processes

includes information that proves the sender’s knowledge of the

shared secret, the recipient knows for sure that the sender was the other process in the pair. Of

course, care must be taken to ensure that the shared secret is not revealed to an enemy.

Cryptography is the science of keeping messages secure, and encryption is the process of

scrambling a message in such a way as to hide its contents. Modern cryptography is based on

encryption algorithms that use secret keys – large numbers that are difficult to guess – to

transform data in a manner that can only be reversed with knowledge of the corresponding

decryption key.

Authentication: The use of shared secrets and encryption provides the basis for the

authentication of messages – proving the identities supplied by their senders. The basic

authentication technique is to include in a message an encrypted portion that contains enough of

the contents of the message to guarantee its authenticity. The authentication portion of a request

to a file server to read part of a file, for example, might include a representation of the requesting

principal’s identity, the identity of the file and the date and time of the request, all encrypted with

a secret key shared between the file server and the requesting process. The server would decrypt

this and check that it corresponds to the unencrypted details specified in the request.

Secure channels: Encryption and authentication are used to build secure channels as a service

layer on top of existing communication services. A secure channel is a communication channel

connecting a pair of processes, each of which acts on behalf of a principal, as shown in the

following figure. A secure channel has the following properties:

• Each of the processes knows reliably the identity of the principal on whose behalf the other

process is executing. Therefore if a client and server communicate via a secure channel, the

server knows the identity of the principal behind the invocations and can check their access

rights before performing an operation. This enables the server to protect its objects correctly and

allows the client to be sure that it is receiving results from a bona fide server.

• A secure channel ensures the privacy and integrity (protection against tampering) of the data

transmitted across it.

Distributed Systems Page 29

• Each message includes a physical or logical timestamp to prevent messages from being

replayed or reordered.

Communication aspects of middleware, although the principles discussed are more widely applicable. This one is

concerned with the design of the components shown in the darker layer in the following figure.

Applications,services

RMI and RPC

UDP and TCP

request-replyprotocol marshalling

and external data representation

Distributed Systems Page 30

UNIT II

Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing physical clocks,

Logical time and Logical clocks, Global states,.

Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast

Communication, Consensus and Related problems.

CLOCKS, EVENTS AND PROCESS STATES

Each process executes on a single processor, and the processors do not share memory (Chapter 6

briefly considered the case of processes that share memory). Each process pi in has a state si that, in

general, it transforms as it executes. The process’s state includes the values of all the variables within

it. Its state may also include the values of any objects in its local operating system environment that it

affects, such as files. We assume that processes cannot communicate with one another in any way

except by sending messages through the network.

So, for example, if the processes operate robot arms connected to their respective nodes in the

system, then they are not allowed to communicate by shaking one another’s robot hands! As each

process pi executes it takes a series of actions, each of which is either amessage send or receive

operation, or an operation that transforms pi ’s state – one that changes one or more of the values in

si. In practice, we may choose to use a high-leveldescription of the actions, according to the

application. For example, if the processes in are engaged in an eCommerce application, then the

actions may be ones such as ‘client dispatched order message’ or ‘merchant server recorded

transaction to log’. We define an event to be the occurrence of a single action that a process carries

out as it executes – a communication action or a state-transforming action. The sequence of events

within a single process pi can be placed in a single, total ordering, which we denote by the relation i

between the events. That is, if and only if the event e occurs before e at pi . This ordering is well

defined, whether or not the process is multithreaded, since we have assumed that the process executes

on a single processor. Now we can define the history of process pi to be the series of events that take

place within it, ordered as we have described by the relation

Clocks • We have seen how to order the events at a process, but not how to timestamp them – i.e., to

assign to them a date and time of day. Computers each contain their own physical clocks. These

clocks are electronic devices that count oscillations occurring in a crystal at a definite frequency, and

typically divide this count and store the result in a counter register. Clock devices can be programmed

Distributed Systems Page 31

to generate interrupts at regular intervals in order that, for example, timeslicing can be implemented;

however, we shall not concern ourselves with this aspect of clock operation.

The operating system reads the node’s hardware clock value, Hit , scales it and adds an offset so as

 to produce a software clock Cit = Hit + that approximately measures real, physical time t for process pi

. In other words, when the real time in an absolute frame of reference is t, Cit is the reading on the

software clock. For example, Cit could be the 64-bit value of the number of nanoseconds that

have elapsed at time t since a convenient reference time. In general, the clock is not completely

accurate, so Cit will differ from t. Nonetheless, if Ci behaves sufficiently well (we shall examine

the notion of clock correctness shortly), we can use its value to timestamp any event at pi . Note

that successive events will correspond to different timestamps only if the clock resolution – the

period between updates of the clock value – is smaller than the time interval between successive

events. The rate at which events occur depends on such factors as the length of the processor

instruction cycle.

Clock skew and clock drift • Computer clocks, like any others, tend not to be in perfect agreement

Coordinated Universal Time • Computer clocks can be synchronized to external sources of highly

accurate time. The most accurate physical clocks use atomic oscillators, whose drift rate is about one

part in 1013. The output of these atomic clocks is used as the standard second has been defined as

9,192,631,770 periods of transition between the two hyperfine levels of the ground state of Caesium-

133 (Cs133). Seconds and years and other time units that we use are rooted in astronomical time.

They were originally defined in terms of the rotation of the Earth on its axis and its rotation about the

Sun. However, the period of the Earth’s rotation about its axis is gradually getting longer, primarily

because of tidal friction; atmospheric effects and convection currents within the Earth’s core also

cause short-term increases and decreases in the period. So astronomical time and atomic time have a

tendency to get out of step.

Coordinated Universal Time – abbreviated as UTC (from the French equivalent) – is an international

standard for timekeeping. It is based on atomic time, but a so-called ‘leap second’ is inserted – or,

more rarely, deleted – occasionally to keep it in step with astronomical time. UTC signals are

synchronized and broadcast regularly from landbased

radio stations and satellites covering many parts of the world. For example, in the USA, the radio

station WWV broadcasts time signals on several shortwave frequencies.

Satellite sources include the Global Positioning System (GPS).Receivers are available commercially.

Compared with ‘perfect’ UTC, the signals received from land-based stations have an accuracy on the

order of 0.1–10 milliseconds,depending on the station used. Signals received from GPS satellites are

Distributed Systems Page 32

accurate to about 1 microsecond. Computers with receivers attached can synchronize their clocks

with these timing signals.

Synchronizing physical clocks

In order to know at what time of day events occur at the processes in our distributed system – for

example, for accountancy purposes – it is necessary to synchronize the processes’ clocks, Ci , with an

authoritative, external source of time. This is external synchronization. And if the clocks Ci are

synchronized with one another to a known degree of accuracy, then we can measure the interval

between two events occurring at different computers by appealing to their local clocks, even though

they are not necessarily synchronized to an external source of time. This is internal

synchronization.We define these two modes of synchronization more closely as follows, over an

interval of real time I:

External synchronization: For a synchronization bound D 0 , and for a source S of UTC time, St – Cit

< D, for i = 1 2N and for all real times t in I. Another way of saying this is that the clocks Ci are

accurate to within the bound D.

Internal synchronization: For a synchronization bound D 0 , Cit – Cjt D for i j = 1 2N , and for all

real times t in I. Another way of saying this is that he clocks Ci agree within the bound D. Clocks that

are internally synchronized are not necessarily externally synchronized, since they may drift

collectively from an external source of time even though they agree with one another. However, it

follows from the definitions that if the system is externally synchronized with a bound D then the

same system is internally synchronized with a bound of 2D. Various notions of correctness for clocks

have been suggested. It is common to define a hardware clock H to be correct

if its drift rate falls within a known bound (a value derived from one supplied by the manufacturer,

such as 10–6 seconds/second).

This means that the error in measuring the interval between real times t and t (t t) is bounded:

1 – t – t Ht – Ht 1 + t – t

This condition forbids jumps in the value of hardware clocks (during normal operation). Sometimes

we also require our software clocks to obey the condition but a weaker condition of monotonicity may

suffice. Monotonicity is the condition that a clock C only ever advances: t t Ct Ct For example, the

UNIX make facility is a tool that is used to compile only those source files that have been modified

since they were last compiled. The modification dates of each corresponding pair of source and object

files are compared to determine this condition. If a computer whose clock was running fast set its

clock back after compiling a source file but before the file was changed, the source file might appear

Distributed Systems Page 33

to have been modified prior to the compilation. Erroneously, make will not recompile the source file.

We can achieve monotonicity despite the fact that a clock is found to be running fast. We need only

change the rate at which updates are made to the time as given to applications. This can be achieved

in software without changing the rate at which the underlying hardware clock ticks – recall that Cit =

Hit + , where we are free to choose the values of and . A hybrid correctness condition that is sometimes applied

is to require that a clock obeys the monotonicity condition, and that its drift rate is bounded between

synchronization points, but to allow the clock value to jump ahead at synchronization points.

A clock that does not keep to whatever correctness conditions apply is defined to be faulty. A clock’s

crash failure is said to occur when the clock stops ticking altogether;any other clock failure is an arbitrary

failure. A historical example of an arbitrary failure is that of a clock with the ‘Y2K bug’, which broke the

monotonicity condition by registering the date after 31 December 1999 as 1 January 1900 instead of 2000;

another example is a clock whose batteries are very low and whose drift rate suddenly becomes very large.

Note that clocks do not have to be accurate to be correct, according to the definitions. Since the goal

may be internal rather than external synchronization, the criteria for correctness are only concerned

with the proper functioning of the clock’s ‘mechanism’, not its absolute setting. We now describe

algorithms for external synchronization and for internal synchronization.

Logical time and logical clocks

From the point of view of any single process, events are ordered uniquely by times shown on the

local clock. However, as Lamport [1978] pointed out, since we cannot synchronize clocks perfectly

across a distributed system, we cannot in general use physical time to find out the order of any

arbitrary pair of events occurring within it. In general, we can use a scheme that is similar to physical

causality but that applies in distributed systems to order some of the events that occur at different

processes. This ordering is based on two simple and intuitively obvious points: • If two events

occurred at the same process pi i = 1 2 N , then they occurred in the order in which pi observes them

– this is the order i that we defined above.• Whenever a message is sent between processes, the event

of sending the message occurred before the event of receiving the message.

Lamport called the partial ordering obtained by generalizing these two relationships the

happened-before relation. It is also sometimes known as the relation of causal ordering or potential

causal ordering.

We can define the happened-before relation, denoted by , as follows: HB1: If processpi : e i e', then e

e .

HB2: For any message m, send(m) receive(m) – where send(m) is the event of sending the message,

and receive(m)s the event of receiving it. HB3: If e, e and e are events such that e e and e e , then e e .

Distributed Systems Page 34

Totally ordered logical clocks • Some pairs of distinct events, generated by different processes, have

numerically identical Lamport timestamps. However, we can create a total order on the set of events

– that is, one for which all pairs of distinct events are ordered – by taking into account the identifiers

of the processes at which events occur. If e is an event occurring at pi with local timestamp Ti , and e

is an event occurring at pj with local timestamp Tj , we define the global logical timestamps for these

events to be Ti i and Tj j , respectively. And we define Ti i Tj j if and only if either Ti Tj , or Ti = Tj

and i j . This ordering has no general physical significance

(because process identiiers are arbitrary), but it is sometimes useful. Lamport used it, for example, to

order the entry of processes to a critical section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome the

shortcoming of Lamport’s clocks: the fact that from Le Le we cannot conclude that e e.

. A vector clock for a system of N processes is an array of N

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local events. Like

Lamport timestamps, processes piggyback vector timestamps on the messages they send to one

another, and there are simple rules for updating the clocks:

VC1: Initially, Vij = 0 , for i j = 1 2 N .

VC2: Just before pi timestamps an event, it sets Vii :=Vii + 1. VC3:

pi includes the value t = Vi in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets Vij := maxVij tj , for j = 1 2 N . Taking the

componentwise maximum of two vector timestamps in this way is known as a merge operation.For a

vector clock Vi , Vii is the number of events that pi has timestamped, and Vij j i is the number of

events that have occurred at pj that have potentially affected pi . (Process pj may have timestamped

more events by this point, but no information has flowed to pi about them in messages as yet.)

Clocks, Events and Process States

• A distributed system consists of a collection P of N processes pi, i = 1,2,… NEach process pi

has a state si consisting of its variables (which it transforms as it executes)

Processes communicate only by messages (via a network)

• Actions of processes: Send, Receive, change own state

• Event: the occurrence of a single action that a process carries out as it executes

– Events at a single process pi, can be placed in a total ordering denoted by the relation →i

between the events. i.e.e →i e’ if and only if event e occurs before event e’ at process pi

• A history of process pi: is a series of events ordered by →i

– history(pi) = hi =<ei0, ei1, ei2, …>

Distributed Systems Page 35

clocks

To timestamp events, use the computer‘s clock • At real time, t, the OS reads the time on the

computer‘s hardware clock Hi(t)

• It calculates the time on its software clock Ci(t)=αHi(t) + β

– e.g. a 64 bit value giving nanoseconds since some base time

– Clock resolution: period between updates of the clock value

• In general, the clock is not completely accurate – but if Ci behaves well enough, it can be used

to timestamp events at pi

Skew between computer clocks in a distributed system

Computer clocks are not generally in perfect agreement

• Clock skew: the difference between the times on two clocks (at any instant)

• Computer clocks use crystal-based clocks that are subject to physical variations

– Clock drift: they count time at different rates and so diverge (frequencies of oscillation differ)

– Clock drift rate: the difference per unit of time from some ideal reference clock

– Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).

– High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Coordinated Universal Time (UTC)

• UTC is an international standard for time keeping

– It is based on atomic time, but occasionally adjusted to astronomical time

– International Atomic Time is based on very accurate physical clocks (drift rate 10-13)

• It is broadcast from radio stations on land and satellite (e.g.GPS)

• Computers with receivers can synchronize their clocks with these timing signals (by requesting

• time from GPS/UTC source)

– Signals from land-based stations are accurate to about 0.1-10 millisecond

– Signals from GPS are accurate to about 1 microsecond

Distributed Systems Page 36

Synchronizing physical clocks

Two models of synchronization

• External synchronization: a computer‘s clock Ci is synchronized with an external authoritative

time source S, so that:

– |S(t) - Ci(t)| < D for i = 1, 2, …N over an interval, I of realtime

– The clocks Ci are accurate to within the bound D.

• Internal synchronization: the clocks of a pair of computers are synchronized with one another

so that:

– | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval, I of realtime

– The clocks Ci and Cj agree within the bound D.

Internally synchronized clocks are not necessarily externally synchronized, as they may drift

collectively

– if the set of processes P is synchronized externally within a bound D, it is also internally

synchronized within bound 2D (worst case polarity)

Clock correctness

• Correct clock: a hardware clock H is said to be correct if its drift rate is within a bound ρ > 0

(e.g. 10-6 secs/ sec)

This means that the error in measuring the interval between real times t and

t’ is bounded:

– (1 - ρ) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + ρ) (t’ - t) (where t’>t) Which forbids jumps in time

readings of hardware clocks

– Clock monotonicity: weaker condition of correctness – t' > t ⇒ C(t’) > C(t) e.g. required by Unix

make

– A hardware clock that runs fast can achieve monotonicity by adjusting the values of α and β

such that Ci(t)= αHi(t) + β

– Faulty clock: a clock not keeping its correctness condition crash failure - a clock stops ticking

• arbitrary failure - any other failure e.g. jumps in time; Y2Kbug

Synchronization in a synchronous system

A synchronous distributed system is one in which the following bounds are defined

he time to execute each step of a process has known lower and upper bounds each message

transmitted over a channel is received within a knownbounded time (min and max) each process has a

local clock whose drift rate from real time has a known bound

Distributed Systems Page 37

Internal synchronization in a synchronous system

➢ One process p1 sends its local time t to process p2 in a message m

➢ p2 could set its clock to t + Ttrans where Ttrans is the time to transmit m

➢ Ttrans is unknown but min ≤ Ttrans ≤ max

➢ uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2

Cristian‘s method for an asynchronous system

➢ A time server S receives signals from a UTC source

➢ Process p requests time in mr and receives t in mt from S

➢ p sets its clock to t + Tround/2

➢ Accuracy ± (Tround/2 - min) :

➢ because the earliest time S puts t in message mt is min after p sent mr

➢ the latest time was min before mt arrived at p

➢ the time by S‘s clock when mt arrives is in the range [t+min, t + Tround - min]

➢ the width of the range is Tround + 2min

Distributed Systems Page 38

The Berkeley algorithm

➢ Problem with Cristian‘s algorithm

➢ a single time server might fail, so they suggest the use of a

group of synchronized servers

➢ it does not deal with faulty servers

➢ Berkeley algorithm (also 1989)

➢ An algorithm for internal synchronization of a group of computers

➢ A master polls to collect clock values from the others (slaves)

➢ The master uses round trip times to estimate the slaves‘ clock values

➢ It takes an average (eliminating any above some average round trip

time or with faulty clocks)

➢ It sends the required adjustment to the slaves (better than sending

the time which depends on the round trip time)

➢ Measurements

➢ 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

➢ If master fails, can elect a new master to take over (not in bounded time)

Network Time Protocol (NTP)

➢ A time service for the Internet - synchronizes clients to UTC Reliability from redundant paths,

scalable, authenticates time sources Architecture

➢ Primary servers are connected to UTC sources

➢ Secondary servers are synchronized to primary servers

➢ Synchronization subnet - lowest level servers in users‘ computers

➢ strata: the hierarchy level

Distributed Systems Page 39

NTP - synchronization of servers

➢ The synchronization subnet can reconfigure if failuresoccur

➢ a primary that loses its UTC source can become a secondary

➢ a secondary that loses its primary can use another primary

➢ Modes of synchronization for NTP servers:

➢ Multicast

➢ A server within a high speed LAN multicasts time to others which

set clocks assuming some delay (not veryaccurate)

➢ Procedure call

➢ A server accepts requests from other computers (like

Cristian‘s algorithm)

➢ Higher accuracy. Useful if no hardware multicast.

Messages exchanged between a pair of NTP peers

➢ All modes use UDP

➢ Each message bears timestamps of recent events:

➢ Local times of Send and Receive of previous message

➢ Local times of Send of current message

➢ Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)

➢ Estimations of clock offset and message delay

➢ For each pair of messages between two servers, NTP estimates an offset oi (between the

two clocks) and a delay di (total time for the two messages, which take t and t‘)

➢ Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t‘ - o

➢ This gives us (by adding the equations) : di = t + t‘ = Ti-2 - Ti-3 + Ti - Ti-1

➢ Also (by subtracting the equations)

= oi + (t‘ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2

➢ Using the fact that t, t‘>0 it can be shown that

➢ oi - di /2 ≤ o ≤ oi + di /2 .

➢ Thus oi is an estimate of the offset and di is a measure of the accuracy

➢ Data filtering

➢ NTP servers filter pairs <oi, di>, estimating reliability from variation (dispersions),

allowing them to select peers; and synchronization based on the lowest dispersion or min

Distributed Systems Page 40

di ok

➢ A relatively high filter dispersion represents relatively unreliable data

➢ Accuracy of tens of milliseconds over Internet paths (1 ms on LANs)

Logical time and logical clocks

➢ Instead of synchronizing clocks, event ordering can be used

➢ If two events occurred at the same process pi (i = 1, 2, … N) then theyoccurred in the

order observed by pi, that is order →i

➢ when a message, m is sent between two processes, send(m) happened before receive(m)

➢ Lamport[1978] generalized these two relationships into the happened-before relation:

e →i e'

➢ HB1: if e →i e' in process pi, then e → e'

➢ HB2: for any message m, send(m) → receive(m)

➢ HB3: if e → e' and e' → e'', then e → e''

Lamport‘s logical clocks

➢ Each process pi has a logical clock Li

o a monotonically increasing software counter

o not related to a physical clock

➢ Apply Lamport timestamps to events with happened-before relation

o LC1: Li is incremented by 1 before each event at process pi

Distributed Systems Page 41

o LC2:

o when process pi sends message m, it piggybacks t = Li

o when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before

timestamping the event receive (m)

➢ e →e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply e→e‘

Totally ordered logical clocks

➢ Some pairs of distinct events, generated by different processes, may have numerically

identical Lamport timestamps

➢ Different processes may have same Lamport time

➢ Totally ordered logical clocks

➢ If e is an event occurring at pi with local timestamp Ti, and if e‘ is an event occurring at pj

with local timestamp Tj

➢ Define global logical timestamps for the events to be (Ti, i) and (Tj, j)

➢ Define (Ti, i) < (Tj, j) iff

➢ Ti < Tj or

➢ Ti = Tj and i < j

➢ No general physical significance since process identifiers are arbitrary

Vector clocks

➢ Shortcoming of Lamport clocks:

➢ L(e) < L(e') doesn't imply e → e'

➢ Vector clock: an array of N integers for a system of N processes

➢ Each process keeps its own vector clock Vi to timestamp local events

➢ Piggyback vector timestamps on messages

Distributed Systems Page 42

➢ Rules for updating vector clocks:

➢ Vi[i]] is the number of events that pi has timestamped

➢ Viji] (j≠ i) is the number of events at pj that pi has been affected

by VC1: Initially, Vi[j] := 0 for pi, j=1.. N (N processes)

➢ VC2: before pi timestamps an event, Vi[i] := Vi[

i]+1 VC3: pi piggybacks t = Vi on every message

it sends

➢ VC4: when pi receives a timestamp t, it sets Vi[j] := max(Vi[j] , t[j]) for

➢ j=1..N (merge operation)

➢ Compare vector timestamps

➢ V=V‘ iff V[j] = V‘[j] for j=1..N

➢ V>=V‘ iff V[j] <= V‘[j] for j=1..N

➢ V<V‘ iff V<= V‘ ^ V!=V‘

➢ Figure 11.7 shows

➢ a→f since V(a) < V(f)

➢ c || e since neither V(c) <= V(e) nor V(e) <= V(c)

Global states

➢ How do we find out if a particular property is true in a distributed system? For examples,

we will look at:

➢ Distributed Garbage Collection

➢ Deadlock Detection

➢ Termination Detection

➢ Debugging

Distributed Systems Page 43

Distributed Garbage Collection

➢ Objects are identified as garbage when there are no longer any references to them in the

system

➢ Garbage collection reclaims memory used by thoseobjects

➢ In figure 11.8a, process p2 has two objects that do not have any references to other objects,

but one object does have a reference to a message in transit. It is not garbage, but the other

p2 object is

➢ Thus we must consider communication channels as well as object references to

determine unreferenced objects

Deadlock Detection

➢ A distributed deadlock occurs when each of a collection of processes waits for another

process to send it a message, and there is a cycle in the graph of the waits-for relationship

Distributed Systems Page 44

➢ In figure 11.8b, both p1 and p2 wait for a message from the other, so both are blocked and

the system cannot continue

Coordination And Agreement

Introduction

➢ Fundamental issue: for a set of processes, how to coordinate their actions or to agree on

one or more values?

➢ even no fixed master-slave relationship between the components

➢ Further issue: how to consider and deal with failures when designing algorithms

➢ Topics covered

➢ mutual exclusion

➢ how to elect one of a collection of processes to perform a special role

➢ multicast communication

➢ agreement problem: consensus and byzantine agreement

Failure Assumptions and Failure Detectors

➢ Failure assumptions of this chapter

➢ Reliable communication channels

➢ Processes only fail by crashing unless state otherwise

➢ Failure detector: object/code in a process that detects failures of other processes

➢ unreliable failure detector

➢ One of two values: unsuspected or suspected

➢ Evidence of possible failures

➢ Example: most practical systems

➢ Each process sends ―alive/I‘m here‖ message to everyone else

➢ If not receiving ―alive‖ message after timeout, it‘s suspected

➢ maybe function correctly, but network partitioned

➢ reliable failure detector

➢ One of two accurate values: unsuspected or failure – few practical systems

Distributed Systems Page 45

12.2 Distributed Mutual Exclusion

➢ Process coordination in a multitasking OS

➢ Race condition: several processes access and manipulate the same data concurrently

and the outcome of the execution depends on the particular order in which the access

take place

➢ critical section: when one process is executing in a critical section, no other process is

to be allowed to execute in its critical section

➢ Mutual exclusion: If a process is executing in its critical section, then no other processes

can be executing in their critical sections

➢ Distributed mutual exclusion

➢ Provide critical region in a distributed environment

➢ message passing

➢ for example, locking files, locked daemon in UNIX (NFS is stateless, no file-locking at

the NFS level)

Algorithms for mutual exclusion

➢ Problem: an asynchronous system of N processes

➢ processes don't fail

➢ message delivery is reliable; not share variables

➢ only one critical region

➢ application-level protocol: enter(), resourceAccesses(), exit()

➢ Requirements for mutual exclusion

➢ Essential

➢ [ME1] safety: only one process at a time

➢ [ME2] liveness: eventually enter or exit

➢ Additional

➢ [ME3] happened-before ordering: ordering of enter() is the same as HB ordering

➢ Performance evaluation

➢ overhead and bandwidth consumption: # of messages sent

➢ client delay incurred by a process at entry and exit

➢ throughput measured by synchronization delay: delay between one's exit and next's

entry

A central server algorithm

➢ server keeps track of a token---permission to enter critical region

Distributed Systems Page 46

➢ a process requests the server for the token

➢ the server grants the token if it has the token

➢ a process can enter if it gets the token, otherwise waits when done, a

➢ process sends release and exits

A central server algorithm: discussion

➢ Properties

➢ safety, why?

➢ liveness, why?

➢ HB ordering not guaranteed, why?

➢ Performance

➢ enter overhead: two messages (request and grant)

➢ enter delay: time between request and grant

➢ exit overhead: one message (release)

➢ exit delay: none

➢ synchronization delay: between release and grant

➢ centralized server is the bottleneck

A ring-based algorithm

➢ Arrange processes in a logical ring to rotate a token

➢ Wait for the token if it requires to enter the critical section

➢ The ring could be unrelated to the physical configuration

➢ pi sends messages to p(i+1) mod N

➢ when a process requires to enter the critical section, waits for the token

➢ when a process holds the token

➢ If it requires to enter the critical section, it can enter

Distributed Systems Page 47

➢ when a process releases a token (exit), it sends to its neighbor

➢ If it doesn‘t, just immediately forwards the token to its neighbor

An algorithm using multicast and logical clocks

➢ Multicast a request message for the token (Ricart and Agrawala [1981])

➢ enter only if all the other processes reply

➢ totally-ordered timestamps: <T, pi >

➢ Each process keeps a state: RELEASED, HELD, WANTED

➢ if all have state = RELEASED, all reply, a process can hold the token and enter

➢ if a process has state = HELD, doesn't reply until it exits

➢ if more than one process has state = WANTED, process with the lowest timestamp will get

all

Distributed Systems Page 48

An algorithm using multicast: discussion

➢ •Properties

➢ safety, why?

➢ liveness, why?

➢ HB ordering, why?

➢ Performance

➢ bandwidth consumption: no token keeps circulating

➢ entry overhead: 2(N-1), why? [with multicast support: 1 + (N -1) = N]

➢ entry delay: delay between request and getting all replies

➢ exit overhead: 0 to N-1 messages

➢ exit delay: none

➢ synchronization delay: delay for 1 message (one last reply from the previous holder)

Maekawa‘s voting algorithm

➢ •Observation: not all peers to grant it access
➢ Only obtain permission from subsets, overlapped by any two processes

➢ •Maekawa‘s approach

➢ subsets Vi,Vj for process Pi, Pj

➢ Pi ∈ Vi, Pj ∈ Vj

➢ Vi ∩ Vj ≠ ∅ , there is at least one common member
➢ subset |Vi|=K, to be fair, each process should have the same size

➢ Pi cannot enter the critical section until it has received all K reply messages
➢ Choose a subset

Distributed Systems Page 49

➢ Simple way (2√N): place processes in a √N by √N matrix and let Vi be the union of the
row and column containing Pi

➢ If P1, P2 and P3 concurrently request entry to the critical section, then its possible that

each process has received one (itself) out of two replies, and none can proceed

➢ adapted and solved by [Saunders 1987]

Elections

Election: choosing a unique process for a particular role
➢ All the processes agree on the unique choice

➢ For example, server in dist. Mutex assumptions

➢ Each process can call only one election at a time multiple concurrent elections can be called
by different processes

➢ Participant: engages in an election each process pi has variable electedi = ? (don't know)

initially process with the largest identifier wins.

➢ The (unique) identifier could be any useful value Properties

➢ [E1] electedi of a ―participant‖ process must be P (elected process=largestid) or ⊥
(undefined)

➢ [E2] liveness: all processes participate and eventually set electedi != ⊥ (or crash)

Performance

➢ overhead (bandwidth consumption): # of messages

➢ turnaround time: # of messages to complete an election

A ring-based election algorithm

➢ Arrange processes in a logical ring

o pi sends messages to p(i+1) mod N

o It could be unrelated to the physical configuration

o Elect the coordinator with the largest id

Distributed Systems Page 50

o Assume no failures

➢ Initially, every process is a non-participant. Any process can call an election

o Marks itself as participant

o Places its id in an election message

o Sends the message to its neighbor
o Receiving an election message

➢ if id > myid, forward the msg, mark participant
➢ if id < myid

o non-participant: replace id with myid: forward the msg, mark participant

o participant: stop forwarding (why? Later, multiple elections)
➢ if id = myid, coordinator found, mark non-participant, electedi := id, send elected

o message with myid

o Receiving an elected message
➢ id != myid, mark non-participant, electedi := id forward the msg
➢ if id = myid, stop forwarding

Figure 12.7 A ring-based election in progress

➢ Receiving an election message:

➢ if id > myid, forward the msg, mark participant

➢ if id < myid

➢ non-participant: replace id with myid: forward the msg, mark participant

➢ participant: stop forwarding (why? Later, multiple elections)

➢ if id = myid, coordinator found, mark non-participant, electedi := id, send elected message

with

➢ myid

➢ Receiving an elected message: – id != myid, mark non-participant,

➢ electedi := id forward the msg

➢ if id = myid, stop forwarding

A ring-based election algorithm: discussion

➢ •Properties

Distributed Systems Page 51

➢ safety: only the process with the largest id can send an elected message

➢ liveness: every process in the ring eventually participates in the election; extra

elections are stopped

➢ Performance

➢ one election, best case, when?

➢ N election messages

➢ N elected messages

➢ turnaround: 2N messages

➢ one election, worst case, when?

➢ 2N - 1 election messages

➢ N elected messages

➢ turnaround: 3N - 1 messages

➢ can't tolerate failures, not very practical

The bully election algorithm

• Assumption

– Each process knows which processes have higher identifiers, and that it can communicate with

all such processes

• Compare with ring-based election

– Processes can crash and be detected by timeouts

• synchronous

• timeout T = 2Ttransmitting (max transmission delay) + Tprocessing (max processing delay)

• Three types of messages

– Election: announce an election

– Answer: in response to Election

– Coordinator: announce the identity of the elected process

The bully election algorithm: how to

• Start an election when detect the coordinator has failed or begin to replace the coordinator,

which has lower identifier

– Send an election message to all processes with higher id's and waits for answers (except the

failed coordinator/process)

• If no answers in time T

– Considers it is the coordinator

Distributed Systems Page 52

– sends coordinator message (with its id) to all processes with lower id's

• else

– waits for a coordinator message and starts an election if T‘ timeout

– To be a coordinator, it has to start an election

• A higher id process can replace the current coordinator (hence ―bully‖)

– The highest one directly sends a coordinator message to all process with lower identifiers

• Receiving an election message

– sends an answer message back

– starts an election if it hasn't started one—send election messages to all higher-id processes

(including the ―failed‖ coordinator—the coordinator might be up by now)

• Receiving a coordinator message

– set electedi to the new coordinator

The bully election algorithm: discussion

➢ Properties

➢ safety:

➢ a lower-id process always yields to a higher-id process

➢ However, it‘s guaranteed

➢ if processes that have crashed are replaced by processes with the same identifier since

message delivery order might not be guaranteed and

➢ failure detection might be unreliable

➢ liveness: all processes participate and know the coordinator at the end

➢ Performance

Distributed Systems Page 53

➢ best case: when?

➢ overhead: N-2 coordinator messages

➢ turnaround delay: no election/answer messages

Multicast Communication

➢ Group (multicast) communication: for each of a group of processes to receive copies

of the messages sent to the group, often with deliveryguarantees

➢ The set of messages that every process of the group should receive

➢ On the delivery ordering across the group members

➢ Challenges

➢ Efficiency concerns include minimizing overhead activities and increasing throughput

and bandwidth utilization

➢ Delivery guarantees ensure that operations are completed

➢ Types of group

➢ Static or dynamic: whether joining or leaving is considered Closed or open

➢ A group is said to be closed if only members of the group can multicast to it. Reliable

Multicast

➢ Simple basic multicasting (B-multicast) is sending a message to every process that is a

member of a defined group

➢ B-multicast (g, m) for each process p ∈ group g, send (p, message m)

➢ On receive (m) at p: B-deliver (m) at p

➢ Reliable multicasting (R-multicast) requires these properties

➢ Integrity: a correct process sends a message to only a member of the group

➢ Validity: if a correct process sends a message, it will eventually bedelivered

➢ Agreement: if a message is delivered to a correct process, all other correct processes

in the group will deliver it

Distributed Systems Page 54

Types of message ordering

Three types of message ordering

– FIFO (First-in, first-out) ordering: if a correct process delivers a message before another,

every correct process will deliver the first message before the other

– Casual ordering: any correct process that delivers the second message will deliver the previous

message first

– Total ordering: if a correct process delivers a message before another, any other correct

process that delivers the second message will deliver the first message first

• Note that

– FIFO ordering and casual ordering are only partial orders

– Not all messages are sent by the same sending process

– Some multicasts are concurrent, not able to be ordered by happened before

– Total order demands consistency, but not a particular order

Figure 12.12 Total, FIFO and causal ordering of multicast messages

Distributed Systems Page 55

Notice

➢ the consistent ordering of totally ordered messages T1 and T2,

➢ the FIFO-related messages F1 and F2 and

➢ the causally related messages C1 and C3 and

➢ the otherwise arbitrary delivery ordering of messages

Note that T1 and T2 are delivered in opposite order to the physical time of message creation

Bulletin board example (FIFO ordering)

• A bulletin board such as Web Board at NJIT illustrates the desirability of consistency and FIFO

ordering. A user can best refer to preceding messages if they are delivered in order. Message 25

in Figure 12.13 refers to message 24, and message 27 refers to message 23.

• Note the further advantage that Web Board allows by permitting messages to begin threads by

replying to a particular message. Thus messages do not have to be displayed in the same order

they are delivered

Distributed Systems Page 56

Implementing total ordering

• The normal approach to total ordering is to assign totally ordered identifiers to multicast

messages, using the identifiers to make ordering decisions.

• One possible implementation is to use a sequencer process to assign identifiers. See Figure

12.14. A drawback of this is that the sequencer can become a bottleneck.

• An alternative is to have the processes collectively agree on identifiers. A simple algorithm is

shown in Figure 12.15.

Figure 12.15 The ISIS algorithm for total ordering

Distributed Systems Page 57

Each process q in group g keeps

• Aq g: the largest agreed sequence number it has observed so far for the group g

• Pq g: its own largest proposed sequence number

Algorithm for process p to multicast a message m to group g

1. B-multicasts <m, i> to g, where i is a unique identifier for m

2. Each process q replies to the sender p with a proposal for the message‘s agreed sequence

number of Pq g :=Max(Aq g, Pq g)+1

3. Collects all the proposed sequence numbers and selects the largest one a as the next agreed

sequence number. It then B-multicasts <i, a> to g.

4. Each process q in g sets Aq g := Max(Aq g, a) and attaches a to the message identified by i

Implementing casual ordering

• Causal ordering using vector timestamps (Figure 12.16)

– Only orders multicasts, and ignores one-to-one messages between processes

– Each process updates its vector timestamp before delivering a message to maintain the count of

precedent messages

Consensus and related problems

• Problems of agreement

– For processes to agree on a value (consensus) after one or more of the processes has proposed

what that value should be

– Covered topics: byzantine generals, interactive consistency, totally ordered multicast

• The byzantine generals problem: a decision whether multiple armies should attack or retreat,

assuming that united action will be more successful than some attacking and some retreating

• Another example might be space ship controllers deciding whether to proceed or abort. Failure

handling during consensus is a key concern

Distributed Systems Page 58

• Assumptions

– communication (by message passing) is reliable

– processes may fail

• Sometimes up to f of the N processes are faulty

Consensus Process

1. Each process pi begins in an undecided state and proposes a single value vi, drawn from a set

D (i=1…N)

2. Processes communicate with each other, exchanging values

3. Each process then sets the value of a decision variable di and enters the decided state

Requirements for Consensus

• Three requirements of a consensus algorithm

– Termination: Eventually every correct process sets its decision variable

– Agreement: The decision value of all correct processes is the same: if pi and pj are correct and

have entered the decided state, then di=dj

(i,j=1,2, …, N)

– Integrity: If the correct processes all proposed the same value, then any correct process in the

decided state has chosen that value

The byzantine generals problem

• Problem description

– Three or more generals must agree to attack or to retreat

– One general, the commander, issues the order

– Other generals, the lieutenants, must decide to attack or retreat

Distributed Systems Page 59

– One or more generals may be treacherous

• A treacherous general tells one general to attack and another to retreat

• Difference from consensus is that a single process supplies the value to agree on

• Requirements

– Termination: eventually each correct process sets its decision variable

– Agreement: the decision variable of all correct processes is the same

– Integrity: if the commander is correct, then all correct processes agree on the value that the

commander has proposed (but the commander need not be correct)

The interactive consistency problem

• Interactive consistency: all correct processes agree on a vector of values, one for each process.

This is called the decision vector

– Another variant of consensus

• Requirements

– Termination: eventually each correct process sets its decision variable

– Agreement: the decision vector of all correct processes is the same

– Integrity: if any process is correct, then all correct processes decide the correct value for that

process

Relating consensus to other problems

• Consensus (C), Byzantine Generals (BG), and Interactive Consensus (IC) are all problems

concerned with making decisions in the context of arbitrary or crash failures

• We can sometimes generate solutions for one problem in terms of another. For example

– We can derive IC from BG by running BG N times, once for each process with that process

acting as commander

– We can derive C from IC by running IC to produce a vector of values at each process, then

– applying a function to the vector‘s values to derive a single value.

– We can derive BG from C by

• Commander sends proposed value to itself and each remaining process

• All processes run C with received values

• They derive BG from the vector of C values

Consensus in a Synchronous System

• Up to f processes may have crash failures, all failures occurring during f+1 rounds.

During each round, each of the correct processes multicasts the values among themselves

• The algorithm guarantees all surviving correct processes are in a position to agree

Distributed Systems Page 60

• Note: any process with f failures will require at least f+1 rounds to agree

Limits for solutions to Byzantine Generals

• Some cases of the Byzantine Generals problems have no solutions

– Lamport et al found that if there are only 3 processes, there is no solution

– Pease et al found that if the total number of processes is less than three times the number of

failures plus one, there is no solution

• Thus there is a solution with 4 processes and 1 failure, if there are two rounds

– In the first, the commander sends the values

– while in the second, each lieutenant sends the values it received

Distributed Systems Page 61

Figure 12.20 Four Byzantine generals

Asynchronous Systems

• All solutions to consistency and Byzantine generals problems are limited to synchronous

systems

• Fischer et al found that there are no solutions in an asynchronous system with even one failure

• This impossibility is circumvented by masking faults or using failuredetection

• There is also a partial solution, assuming an adversary process, based on introducing random

values in the process to prevent an effective thwarting strategy. This does not always reach

consensus

Distributed Systems Page 62

UNIT III

Inter Process Communication: Introduction, characteristics of interprocess communication, External

Data Representation and Marshalling, Client-Server Communication, Group Communication, Case

Study: IPC in UNIX.

Distributed Objects and Remote Invocation: Introduction, Communication between Distributed

Objects, Remote Procedure Call, Events and Notifications, Case study-Java RMI.

The characteristics of interprocess communication

Message passing between a pair of processes can be supported by two message communication

operations, send and receive, defined in terms of destinations and messages. To communicate,

one process sends a message (a sequence of bytes) to a destination and another process at the

destination receives the message. This activity involves the communication of data from the

sending process to the receiving process and may involve the synchronization of the two

processes.

Synchronous and asynchronous communication • A queue is associated with each message

destination. Sending processes cause messages to be added to remote queues and receiving

processes remove messages from local queues. Communication between the sending and

receiving processes may be either synchronous or asynchronous. In the synchronous form of

communication, the sending and receiving processes synchronize at every message. In this

case,both send and receive are blocking operations. Whenever a send is issued the sending

process (or thread) is blocked until the corresponding receive is issued. Whenever a receive is

issued by a process (or thread), it blocks until a message arrives.

In the asynchronous form of communication, the use of the send operation is nonblocking in that

the sending process is allowed to proceed as soon as the message has been copied to a local

buffer, and the transmission of the message proceeds in parallel with the sending process. The

receive operation can have blocking and non-blocking variants. In the non-blocking variant, the

receiving process proceeds with its program after issuing a receive operation, which provides a

buffer to be filled in the background, but it must separately receive notification that its buffer has

been filled, by polling or interrupt.

In a system environment such as Java, which supports multiple threads in a single process, the

blocking receive has no disadvantages, for it can be issued by one thread while other threads in

Distributed Systems Page 63

the process remain active, and the simplicity of synchronizing the receiving threads with the

incoming message is a substantial advantage. Non-blocking communication appears to be more

efficient, but it involves extra complexity in the receiving process associated with the need to

acquire the incoming message out of its flow of control. For these reasons, today’s systems do

not generally provide the nonblocking form of receive.

Message destinations • Chapter 3 explains that in the Internet protocols, messages are sent to

(Internet address, local port) pairs. A local port is a message destination within a computer,

specified as an integer. A port has exactly one receiver but can have many senders. Processes

may use multiple ports to receive messages. Any process that knows the number of a port can

send a message to it. Servers generally publicize their port numbers for use by clients.

Reliability • As far as the validity property is concerned, a point-to-point message service can

be described as reliable if messages are guaranteed to be delivered despite a ‘reasonable’ number

of packets being dropped or lost. In contrast, a point-to-point message service can be described

as unreliable if messages are not guaranteed to be delivered in the face of even a single packet

dropped or lost. For integrity, messages must arrive uncorrupted and without duplication.

Ordering • Some applications require that messages be delivered in sender order – that is, the

order in which they were transmitted by the sender. The delivery of messages out of sender order

is regarded as a failure by such applications.

Sockets

Both forms of communication (UDP and TCP) use the socket abstraction, which provides an

endpoint for ommunication between processes. Sockets originate from BSD UNIX but are also

present in most other versions of UNIX, including Linux as well as Windows and the Macintosh

OS. Interprocess communication consists of transmitting a message between a socket in one

process and a socket in another process, is shown in the following figure.

Distributed Systems Page 64

For a process to receive messages, its socket must be bound to a local port and one of the

Internet addresses of the computer on which it runs. Messages sent to a particular Internet

address and port number can be received only bya process whose socket is associated with that

Internet address and port number. Processes may use the same socket for sending and receiving

messages. Each computer has a large number(216) of possible port numbers for use by local

processes for receiving messages. Any processmay make use of multiple ports to receive

messages, but a process cannot share ports with other processes on the same computer. However,

any number of processes may send messages to the same port. Each socket is associated with a

particular protocol – either UDP or TCP.

Java API for Internet addresses • As the IP packets underlying UDP and TCP are sent to

Internet addresses, Java provides a class, InetAddress, that represents Internet addresses. Users of

this class refer to computers by Domain Name System (DNS) hostnames. For example, instances

of InetAddress that contain Internet addresses can be created by calling a static method of

InetAddress, giving a DNS hostname as the argument. The method uses the DNS to get the

corresponding Internet address. For example, to get an object representing the Internet address of

the host whose DNS name is bruno.dcs.qmul.ac.uk, use:

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk");

This method can throw an UnknownHostException. Note that the user of the class does not need

to state the explicit value of an Internet address. In fact, the class encapsulates the details of the

representation of Internet addresses. Thus the interface for this class is not dependent on the

number of bytes needed to represent Internet addresses – 4 bytes in IPv4 and 16 bytes in IPv6.

UDP datagram communication

A datagram sent by UDP is transmitted from a sending process to a receiving process without

acknowledgement or retries. If a failure occurs, the message may not arrive. A datagram is

transmitted between processes when one process sends it and another receives it. To send or

receive messages a process must first create a socket bound to an

Internet address of the local host and a local port. A server will bind its socket to a server port –

one that it makes known to clients so that they can send messages to it. A client binds its socket

to any free local port. The receive method returns the Internet address and port of the sender, in

addition to the message, allowing the recipient to send a reply.

The following are some issues relating to datagram communication:

Distributed Systems Page 65

Message size: The receiving process needs to specify an array of bytes of a particular size in

which to receive a message. If the message is too big for the array, it is truncated on arrival. The

underlying IP protocol allows packet lengths of up to 216 bytes, which includes the headers as

well as the message. However, most environments impose a size restriction of 8 kilobytes. Any

application requiring messages larger than the maximum must fragment them into chunks of that

size.

Generally, an application, for example DNS, will decide on a size that is not excessively large

but is adequate for its intended use.

Blocking: Sockets normally provide non-blocking sends and blocking receives for datagram

communication (a non-blocking receive is an option in some implementations). The send

operation returns when it has handed the message to the underlying UDP and IP protocols, which

are responsible for transmitting it to its destination. On arrival, the message is placed in a queue

for the socket that is bound to the destination port. The message can be collected from the queue

by an outstanding or future invocation of receive on that socket. Messages are discarded at the

destination if no process already has a socket bound to the destination port.

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting to receive

requests from its clients. But in some programs, it is not appropriate that a process that has

invoked a receive operation should wait indefinitely in situations where the sending process may

have crashed or the expected message may have been lost. To allow for such requirements,

timeouts can be set on sockets. Choosing an appropriate timeout interval is difficult, but it should

be fairly large in comparison with the time required to transmit a message.

Receive from any: The receive method does not specify an origin for messages. Instead, an

invocation of receive gets a message addressed to its socket from any origin. The receive method

returns the Internet address and local port of the sender, allowing the recipient to check where

the message came from. It is possible to connect a datagram socket to a particular remote port

and Internet address, in which case the socket is only able to send messages to and receive

messages from that address.

Failure model for UDP datagrams • A failure model for communication channels and defines

reliable communication in terms of two properties: integrity and validity. The integrity property

requires that messages should not be corrupted or duplicated. The use of a checksum ensures that

there is a negligible probability that any message received is corrupted. UDP datagrams suffer

Distributed Systems Page 66

from the following failures:

Omission failures: Messages may be dropped occasionally, either because of a checksum error or

because no buffer space is available at the source or destination. To simplify the discussion, we

regard send-omission and receive-omission failures as omission failures in the communication

channel.

Ordering: Messages can sometimes be delivered out of sender order. Applications using UDPdatagrams

are left to provide their own checks to achieve the quality of reliable communication they require.

 A reliable delivery service may be constructed from one that suffers from omission failures by the use

 of acknowledgements.

Use of UDP • For some applications, it is acceptable to use a service that is liable to occasional

omission failures. For example, the Domain Name System, which looks up DNS names in the

Internet, is implemented over UDP. Voice over IP (VOIP) also runs over UDP. UDP datagrams

are sometimes an attractive choice because they do notsuffer from the overheads associated with

guaranteed message delivery. There are three main sources of overhead:

• the need to store state information at the source and destination;

• the transmission of extra messages;

• latency for the sender.

Java API for UDP datagrams • The Java API provides datagram communication by means of

two classes: DatagramPacket and DatagramSocket. DatagramPacket:

This class provides a constructor that makes an instance out of an array of bytes comprising a

message, the length of the message and the Internet address and local port number of the

destination socket, as follows:

Datagram packet

array of bytes containing message length of message Internet address port number

An instance of DatagramPacket may be transmitted between processes when one process sends

it and another receives it.UDP server repeatedly receives a request and send s it back to the client

Distributed Systems Page 67

DatagramSocket: This class supports sockets for sending and receiving UDP datagrams. It

provides a constructor that takes a port number as its argument, for use by processes that need to

use a particular port. It also provides a no-argument constructor that allows the system to choose

a free local port. These constructors can throw a SocketException if the chosen port is already in

use or if a reserved port (a number below 1024) is specified when running over UNIX.

UDP server repeatedly receives a request and sends it back to the client

Distributed Systems Page 68

TCP stream communication

The API to the TCP protocol, which originates from BSD 4.x UNIX, provides the abstraction of

a stream of bytes to which data may be written and from which data may be read. The following

characteristics of the network are hidden by the stream abstraction:

Message sizes: The application can choose how much data it writes to a stream or reads from it.

It may deal in very small or very large sets of data. The underlying implementation of a TCP

stream decides how much data to collect before transmitting it as one or more IP packets. On

arrival, the data is handed to the application as requested. Applications can, if necessary, force

data to be sent immediately.

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example of a simple

scheme (which is not used in TCP), the sending end keeps a record of each IP packet sent and the

receiving end acknowledges all the arrivals. If the sender does not receive an acknowledgement

within a timeout, it retransmits the message. The more sophisticated sliding window scheme

[Comer 2006] cuts down on the number of acknowledgement messages required.

Flow control: The TCP protocol attempts to match the speeds of the processes that read from and

write to a stream. If the writer is too fast for the reader, then it is blocked until the reader has

consumed sufficient data.

Distributed Systems Page 69

Message duplication and ordering: Message identifiers are associated with each IP packet,

which enables the recipient to detect and reject duplicates, or to reorder messages that do not

arrive in sender order.

Message destinations: A pair of communicating processes establish a connection before they can

communicate over a stream. Once a connection is established, the processes simply read from

and write to the stream without needing to use Internet addresses and ports. Establishing a

connection involves a connect request from client to server followed by an accept request from

server to client before any communication can take place. This could be a considerable overhead

for a single client-server request and reply.

Java API for TCP streams • The Java interface to TCP streams is provided in the classes

ServerSocket and Socket:

ServerSocket: This class is intended for use by a server to create a socket at a server port for

listening for connect requests from clients. Its accept method gets a connect request from the

queue or, if the queue is empty, blocks until one arrives. The result of executing accept is an

instance of Socket – a socket to use for communicating with the client.

Socket: This class is for use by a pair of processes with a connection. The client uses a

constructor to create a socket, specifying the DNS hostname and port of a server. This

constructor not only creates a socket associated with a local port but also connects it to the

specified remote computer and port number. It can throw an UnknownHostException if the

hostname is wrong or an IOException if an IO error occurs.

TCP client makes connection to server, sends request and receives reply

Distributed Systems Page 70

TCP server makes a connection for each client and then echoes the client’s request

Distributed Systems Page 71

Distributed Systems Page 72

External data representation and marshalling

The information stored in running programs is represented as data structures – for example, by

sets of interconnected objects – whereas the information in messages consists of sequences of

bytes. Irrespective of the form of communication used, the data structures must be flattened

(converted to a sequence of bytes) before transmission and rebuilt on arrival. The individual

primitive data items transmitted in messages can be data values of many different types, and not

all computers store primitive values such as integers in the same order. The representation of

floating-point numbers also differs between architectures. There are two variants for the ordering

of integers: the so-called big-endian order, in which the most significant byte comes first; and

little-endian order, in which it comes last. Another issue is the set of codes used to represent

characters: for example, the majority of applications on systems such as UNIX use ASCII

character coding, taking one byte per character, whereas the Unicode standard allows for the

representation of texts in many different languages and takes two bytes per character.

One of the following methods can be used to enable any two computers to exchange binary data

values:

• The values are converted to an agreed external format before transmission and converted to the

local form on receipt; if the two computers are known to be the same type, the conversion to

external format can be omitted.

• The values are transmitted in the sender’s format, together with an indication of the format

used, and the recipient converts the values if necessary. Note, however, that bytes themselves are

never altered during transmission. To support RMI or RPC, any data type that can be passed as

an argument or returned as a result must be able to be flattened and the individual primitive data

values represented in an agreed format. An agreed standard for the representation of data

structures and primitive values is called an external data representation.

Marshalling is the process of taking a collection of data items and assembling them into a form

suitable for transmission in a message. Unmarshalling is the process of disassembling them on

arrival to produce an equivalent collection of data items at the destination. Thus marshalling

consists of the translation of structured data items and

primitive values into an external data representation. Similarly, unmarshalling consists of the

generation of primitive values from their external data representation and the rebuilding of the

data structures.

Distributed Systems Page 73

Three alternative approaches to external data representation and marshalling are discussed:

• CORBA’s common data representation, which is concerned with an external representation for

the structured and primitive types that can be passed as the arguments and results of remote

method invocations in CORBA. It can be used by a variety of programming languages.

• Java’s object serialization, which is concerned with the flattening and external data

representation of any single object or tree of objects that may need to be transmitted in a message

or stored on a disk. It is for use only by Java.

• XML (Extensible Markup Language), which defines a textual fomat for representing structured

data. It was originally intended for documents containing textual self-describing structured data –

for example documents accessible on the Web – but it is now also used to represent the data sent

in messages exchanged by clients and servers in web services.

In the first two cases, the marshalling and unmarshalling activities are intended to be carried out

by a middleware layer without any involvement on the part of the application programmer. Even

in the case of XML, which is textual and therefore more accessible to hand-encoding, software

for marshalling and unmarshalling is available for all commonly used platforms and

programming environments. Because marshalling requires the consideration of all the finest

details of the representation of the primitive components of composite objects, the process is

likely to be error-prone if carried out by hand. Compactness is another issue that can be

addressed in the design of automatically generated marshalling procedures.

In the first two approaches, the primitive data types are marshalled into a binary form. In the

third approach (XML), the primitive data types are represented textually. The textual

representation of a data value will generally be longer than the equivalent binary representation.

The HTTP protocol, which is described in Chapter 5, is another example of the textualapproach.

Another issue with regard to the design of marshalling methods is whether the marshalled data

should include information concerning the type of its contents. For example, CORBA’s

representation includes just the values of the objects transmitted, and nothing about their types.

On the other hand, both Java serialization and XML do include type information, but in different

ways. Java puts all of the required type information into the serialized form, but XML documents

may refer to externally defined sets of names (with types) called namespaces.

Although we are interested in the use of an external data representation for the arguments and

results of RMIs and RPCs, it does have a more general use for representing data structures,

objects or structured documents in a form suitable for transmission in messages or storing in

files.

Distributed Systems Page 74

CORBA CDR for constructed types

COBRBA’s Common Data Representation (CDR)

CORBA CDR is the external data representation defined with CORBA 2.0. CDR can represent

all of the data types that can be used as arguments and return values in remote invocations in

CORBA. These consist of 15 primitive types, which include short (16-bit), long (32-bit),

unsigned short, unsigned long, float (32-bit), double (64-bit), char, boolean (TRUE, FALSE),

octet (8-bit), and any (which can represent any basic or constructed type); together with a range

of composite types, which are described in Figure 4.7. Each argument or result in a remote

invocation is

represented by a sequence of bytes in the invocation or result message.

Marshalling in CORBA • Marshalling operations can be generated automatically from the

specification of the types of data items to be transmitted in a message. The types of the data

structures and the types of the basic data items are described in CORBA IDL (see Section 8.3.1),

which provides a notation for describing the types of the arguments and results of RMI methods.

Java object serialization

Distributed Systems Page 75

In Java RMI, both objects and primitive data values may be passed as arguments and results of

method invocations. An object is an instance of a Java class. For example, the Java class

equivalent to the Person struct defined in CORBA IDL might be:

public class Person implements Serializable {
private String name;

private String place;

private int year;

public Person(String aName, String aPlace, int aYear) {name = aName; place = aPlace; year = aYear;

}

// followed by methods for accessing the instance variables

}

Extensible Markup Language (XML)

XML is a markup language that was defined by the World Wide Web Consortium (W3C) for

general use on the Web. In general, the term markup language refers to a textual encoding that

represents both a text and details as to its structure or its appearance. Both XML and HTML

were derived from SGML (Standardized Generalized Markup Language) [ISO 8879], a very

complex markup language. HTML was designed for defining the appearance of web pages.

XML was designed for writing structured documents for the Web.

XML data items are tagged with ‘markup’ strings. The tags are used to describe the logical

structure of the data and to associate attribute-value pairs with logical structures. That is, in

XML, the tags relate to the structure of the text that they enclose, in contrast to HTML, in which

the tags specify how a browser could display the text. For a specification of XML, see the pages

on XML provided by W3C [www.w3.org VI].

XML is used to enable clients to communicate with web services and for defining the interfaces

and other properties of web services. However, XML is also used in many other ways, including

in archiving and retrieval systems – although an XML archive may be larger than a binary one, it

has the advantage of being readable on any computer.

Other examples of uses of XML include for the specification of user interfaces and the encoding

of configuration files in operating systems.

XML is extensible in the sense that users can define their own tags, in contrast to HTML, which

uses a fixed set of tags. However, if an XML document is intended to be used by more than one

application, then the names of the tags must be agreed between them. For example, clients

usually use SOAP messages to communicate with web

services. SOAP is an XML format whose tags are published for use by web services and their
clients.

Some external data representations (such as CORBA CDR) do not need to be self describing,

because it is assumed that the client and server exchanging a message have prior knowledge of

the order and the types of the information it contains. However, XML was intended to be used by

multiple applications for different purposes. The provision of tags, together with the use of

namespaces to define the meaning of the tags, has made this possible. In addition, the use of tags

enables applications to select just those parts of a document it needs to process: it will not be

http://www.w3.org/

Distributed Systems Page 76

affected by the addition of information relevant to other applications.

-

XML definition of the Person structure

Remote object references

Java and CORBA that support the distributed object model. It is not relevant to XML. When a

client invokes a method in a remote object, an invocation message is sent to the server process

that hosts the remote object. This message needs to specify which particular object is to have its

method invoked. A remote object reference is an identifier for a remote object that is valid

throughout a distributed system. A remote object reference is passed in the invocation message

to specify which object is to be invoked. Chapter 5 explains that remote object references are

also passed as arguments and returned as results of remote method invocations, that each remote

object has a single remote object reference and that remote object references can be compared to

see whether they refer to the same remote object. Here, we discuss the external representation of

remote object references.

Client-server communication

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments) sends a request
message to the remote object and returns the reply.

The arguments specify the remote object, the method to be invoked and the arguments of that

method.

public byte[] getRequest (); acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); sends the reply
message reply to the client at its Internet address and port.

Distributed Systems Page 77

RPC exchange protocols

HTTP request message

HTTP reply message

Request-reply communication

Group communication

A multicast operation is more appropriate – this is an operation that sends a single message from

one process to

each of the members of a group of processes, usually in such a way that the membership of the

group is transparent to the sender. There is a range of possibilities in the desired behaviour of a

multicast. The simplest multicast rotocol provides no guarantees about message delivery or

ordering.

Multicast messages provide a useful infrastructure for constructing distributed systems with the

following characteristics:

1. Fault tolerance based on replicated services: A replicated service consists of a group of

servers. Client requests are multicast to all the members of the group, each of which performs an

identical operation. Even when some of the members fail, clients can still be served.

2. Discovering services in spontaneous networking: Section 1.3.2 defines service discovery in

the context of spontaneous networking. Multicast messages can be used by servers and clients to

locate available discovery services in order to register their interfaces or to look up the interfaces

of other services in the distributed system.

3. Better performance through replicated data: Data are replicated to increase the performance

Distributed Systems Page 78

of a service – in some cases replicas of the data are placed in users’ computers. Each time the

data changes, the new value is multicast to the processes managing the replicas.

4. Propagation of event notifications: Multicast to a group may be used to notify processes when

something happens. For example, in Facebook, when someone changes their status, all their

friends receive notifications. Similarly, publishsubscribe protocols may make use of group

multicast to disseminate events to subscribers (see Chapter 6).

IP multicast – An implementation of multicast communication

IP multicast • IP multicast is built on top of the Internet Protocol (IP). Note that IP packets are

addressed to computers – ports belong to the TCP and UDP levels. IP multicast allows the sender

to transmit a single IP packet to a set of computers that form a multicast group. The sender is

unaware of the identities of the individual recipients and of the size of the group. A multicast

group is specified by a Class D Internet address – that is, an address whose first 4 bits are 1110

in IPv4.

At the application programming level, IP multicast is available only via UDP. An application

program performs multicasts by sending UDP datagrams with multicast addresses and ordinary

port numbers. It can join a multicast group by making its socket join the group, enabling it to

receive messages to the group. At the IP level, a computer belongs to a multicast group when one

or more of its processes has sockets that belong to that group. When a multicast message arrives

at a computer, copies are forwarded to all of the local sockets that have joined the specified

multicast address and are bound to the specified port number. The following details are specific

to IPv4:

Multicast routers: IP packets can be multicast both on a local network and on the wider Internet.

Local multicasts use the multicast capability of the local network, for example, of an Ethernet.

Internet multicasts make use of multicast routers, which forward single datagrams to routers on

other networks, where they are again multicast to local members. To limit the distance of

propagation of a multicast datagram, the sender can specify the number of routers it is allowed to

pass – called the time to live, or TTL for short. To understand how routers know which other

routers have members of a multicast group.

Multicast address allocation: As discussed in Chapter 3, Class D addresses (that is, addresses in

the range 224.0.0.0 to 239.255.255.255) are reserved for multicast traffic and managed globally

by the Internet Assigned Numbers Authority (IANA). The management of this address space is

reviewed annually, with current practice documented in RPC 3171. This document defines a

partitioning of this address space into a number of blocks, including:

Distributed Systems Page 79

• Local Network Control Block (224.0.0.0 to 224.0.0.225), for multicast traffic within a given

local network.

• Internet Control Block (224.0.1.0 to 224.0.1.225).

• Ad Hoc Control Block (224.0.2.0 to 224.0.255.0), for traffic that does not fit any other block.

• Administratively Scoped Block (239.0.0.0 to 239.255.255.255), which is used to implement a

scoping mechanism for multicast traffic (to constrain propagation).

Failure model for multicast datagrams • Datagrams multicast over IP multicast have the same

failure characteristics as UDP datagrams – that is, they suffer from omission failures. The effect

on a multicast is that messages are not guaranteed to be delivered to any particular group

member in the face of even a single omission failure. That is, some but not all of the members of

the group may receive it. This can be called unreliable multicast, because it does not guarantee

that a message will be delivered to any member of a group.

Java API to IP multicast • The Java API provides a datagram interface to IP multicast through

the class MulticastSocket, which is a subclass of DatagramSocket with the additional capability

of being able to join multicast groups. The class MulticastSocket provides two alternative

constructors, allowing sockets to be created to use either a or any free local port. A process can

join a multicast group with a given multicast address by invoking the joinGroup method of its

multicast socket. Effectively, the socket joins a multicast group at a given port and it will

receive datagrams sent by processes on other computers to that group at that port. A process can

leave a specified group by invoking the leaveGroup method of its multicast socket.

Distributed Systems Page 80

Multicast peer joins a group and sends and receives datagrams

Reliability and ordering of multicast

The effect of the failure semantics of IP multicast on the four examples of the use of replication

1. Fault tolerance based on replicated services: Consider a replicated service that consists of the

members of a group of servers that start in the same initial state and always perform the same

operations in the same order, so as to remain consistent with one another. This application of

multicast requires that either all of the replicas or none of them should receive each request to

perform an operation – if one of them misses a request, it will become inconsistent with the

others. In most cases, this service would require that all members receive request messages in the

same order as one another.

2. Discovering services in spontaneous networking: One way for a process to discover services

in spontaneous networking is to multicast requests at periodic intervals, and for the available

services to listen for those multicasts and respond. An occasional lost request is not an issue

when discovering services.

3. Better performance through replicated data: Consider the case where the replicated data itself,

rather than operations on the data, are distributed by means of multicast messages. The effect of

lost messages and inconsistent ordering would depend on the method of replication and the

importance of all replicas being totally up-to-date.

4. Propagation of event notifications: The particular application determines the qualities required

of multicast. For example, the Jini lookup services use IP multicast to announce their existence

Distributed Systems Page 81

Communication between Distributed Objects

The Object Model

Five Parts of the Object Model

– An object-oriented program consists of a collection of interacting objects

• Objects consist of a set of data and a set of methods

• In DS, object’s data should be accessible only via methods

Object References

– Objects are accessed by object references

– Object references can be assigned to variables, passed as arguments, and returned as the result

of a method

– Can also specify a method to be invoked on that object

Interfaces

– Provide a definition of the signatures of a set of methods without specifying their

implementation

– Define types that can be used to declare the type of variables or of the parameters and return

values of methods

Actions

– Objects invoke methods in other objects

– An invocation can include additional information as arguments to perform the behavior

specified by the method

– Effects of invoking a method

1. The state of the receiving object may be changed

2. A new object may be instantiated

3. Further invocations on methods in other objects may occur

4. An exception may be generated if there is a problem encountered

Exceptions

– Provide a clean way to deal with unexpected events or errors

– A block of code can be defined to throw an exception when errors or unexpected conditions

occur. Then control passes to code that catches the exception

Garbage Collection

– Provide a means of freeing the space that is no longer needed

– Java (automatic), C++ (user supplied)

Distributed Objects

Distributed Systems Page 82

• Physical distribution of objects into different processes or computers in a distributed system

– Object state consists of the values of its instance variables

– Object methods invoked by remote method invocation (RMI)

– Object encapsulation: object state accessed only by the object methods

Usually adopt the client-server architecture

– Basic model

• Objects are managed by servers and

• Their clients invoke their methods using RMI

– Steps

1. The client sends the RMI request in a message to the server

2. The server executes the invoked method of the object

3. The server returns the result to the client in another message

– Other models

• Chains of related invocations: objects in servers may become clients of objects in other servers

• Object replication: objects can be replicated for fault tolerance and performance

• Object migration: objects can be migrated to enhancing performance and availability

The Distributed Object Model

Two fundamental concepts: Remote Object Reference and Remote Interface

– Each process contains objects, some of which can receive remote invocations are called remote

objects (B, F), others only local invocations

– Objects need to know the remote object reference of an object in another process in order to

invoke its methods, called remote method invocations

– Every remote object has a remote interface that specifies which of its methods can be invoked

remotely

Remote and local method invocations

Distributed Systems Page 83

Five Parts of Distributed Object Model

• Remote Object References

– accessing the remote object

– identifier throughout a distributed system

– can be passed as arguments

• Remote Interfaces

– specifying which methods can be invoked remotely

– name, arguments, return type

– Interface Definition Language (IDL) used for defining remote interface

Remote Object and Its remote Interface

• Actions

– An action initiated by a method invocation may result in further invocations on methods in

other objects located indifference processes or computers

– Remote invocations could lead to the instantiation of new objects, ie. objects M and N of

following figure.

• Exceptions

– More kinds of exceptions: i.e. timeout exception

- RMI should be able to raise exceptions such as timeouts that are due to distribution as well as

those raised during the execution of the method invoked

• Garbage Collection

- Distributed garbage collections is generally achieved by cooperation between the existing local

garbage collector and an added module that carries out a form of distributed garbage collection,

usually based on reference counting

Design Issues for RMI

• Two design issues that arise in extension of local method invocation for RMI

L

C remote
invocation

instantiateinstantiate remote
invocation

K

M N

Distributed Systems Page 84

– The choice of invocation semantics

• Although local invocations are executed exactly once, this cannot always be the case for RMI

due to transmission error

– Either request or reply message may be lost

– Either server or client may be crashed

– The level of transparency

• Make remote invocation as much like local invocation as possible

RMI Design Issues: Invocation Semantics

• Error handling for delivery guarantees

– Retry request message: whether to retransmit the request message until either a reply is

received or the server is assumed to have failed

– Duplicate filtering: when retransmissions are used, whether to filter out duplicate

requests at the server

– Retransmission of results: whether to keep a history of result messages to enable lost

results to be retransmitted without re-executing the operations

• Choices of invocation semantics

– Maybe: the method executed once or not at all (no retry nor retransmit)

– At-least-once: the method executed at least once

– At-most-once: the method executed exactly once

Invocation semantics: choices of interest

RMI Design Issues: Transparency

• Transparent remote invocation: like a local call

– marshalling/unmarshalling

– locating remote objects

– accessing/syntax

• Differences between local and remote invocations

Distributed Systems Page 85

– latency: a remote invocation is usually several order of magnitude greater than that of a

local one

– availability: remote invocation is more likely to fail

– errors/exceptions: failure of the network? server? hard to tell

• syntax might need to be different to handle different local vs remote errors/exceptions(e.g.

Argus)

– consistency on the remote machine:

• Argus: incomplete transactions, abort, restore states [as if the call was never made]

Implementation of RMI

• Communication module

– Two cooperating communication modules carry out the request-replyprotocols:

message type, request ID, remote object reference

• Transmit request and reply messages between client and server

• Implement specific invocation semantics

– The communication module in the server

• selects the dispatcher for the class of the object to be invoked,

• passes on local reference from remote reference module,

• returns request

The role of proxy and skeleton in remote method invocation

• Remote reference module

– Responsible for translating between local and remote object references and for creating remote

object references

– remote object table: records the correspondence between local and remote object references

• remote objects held by the process (B on server)

• local proxy (B on client)

– When a remote object is to be passed for the first time, the module is asked to create a remote

Distributed Systems Page 86

object reference, which it adds to its table

• Servant

– An instance of a class which provides the body of a remote object

– handles the remote requests

• RMI software

– Proxy: behaves like a local object, but represents the remote object

– Dispatcher: look at the methodID and call the corresponding method in the skeleton

– Skeleton: implements the method

Generated automatically by an interface compiler

Implementation Alternatives of RMI

• Dynamic invocation

– Proxies are static—interface complied into client code

– Dynamic—interface available during run time

• Generic invocation; more info in ―Interface Repository‖ (COBRA)

• Dynamic loading of classes (Java RMI)

• Binder

– A separate service to locate service/object by name through table mapping for names and

remote object references

• Activation of remote objects

– Motivation: many server objects not necessarily in use all of the time

• Servers can be started whenever they are needed by clients, similar to inetd

– Object status: active or passive

• active: available for invocation in a running process

• passive: not running, state is stored and methods are pending

– Activation of objects:

• creating an active object from the corresponding passive object by creatinga

new instance of its class

• initializing its instance variables from the stored state

– Responsibilities of activator

• Register passive objects that are available for activation

• Start named server processes and activate remote objects in them

• Keep track of the locations of the servers for remote objects that it has already

activated

Distributed Systems Page 87

• Persistent object stores

– An object that is guaranteed to live between activations of processes is called a

persistent object

– Persistent object store: managing the persistent objects

• stored in marshaled from on disk for retrieval

• saved those that were modified

– Deciding whether an object is persistent or not:

• persistent root: any descendent objects are persistent (persistent Java, PerDiS)

• some classes are declared persistent (Arjuna system)

• Object location

– specifying a location: ip address, port #, ...

– location service for migratable objects

• Map remote object references to their probable current locations

• Cache/broadcast scheme (similar to ARP)

– Cache locations

– If not in cache, broadcast to find it

• Improvement: forwarding (similar to mobile IP)

Distributed Garbage Collection

• Aim: ensure that an object

– continues to exist if a local or remote reference to it is still held anywhere

– be collected as soon as no object any longer holds a reference to it

• General approach: reference count

• Java's approach

– the server of an object (B) keeps track of proxies

– when a proxy is created for a remote object

• addRef(B) tells the server to add an entry

– when the local host's garbage collector removes the proxy

• removeRef(B) tells the server to remove the entry

– when no entries for object B, the object on server is deallocated

Remote Procedure Call

• client: "stub" instead of "proxy" (same function, different names)

– local call, marshal arguments, communicate the request

Distributed Systems Page 88

• server:

– dispatcher

– "stub": unmarshal arguments, communicate the results back

Role of client and server stub procedures in RPC in the context of a procedural language

Case Study: Sun RPC

• Sun RPC: client-server in the SUN NFS (network file system)

– UDP or TCP; in other unix OS as well

– Also called ONC (Open Network Computing) RPC

• Interface Definition Language (IDL)

– initially XDR is for data representation, extended to be IDL

– less modern than CORBA IDL and Java

• program numbers instead of interface names

• procedure numbers instead of procedure names

• single input parameter (structs)

– rpcgen: compiler for XDR

• client stub; server main procedure, dispatcher, and server stub

• XDR marshalling, unmarshaling

• Binding (registry) via a local binder - portmapper

– Server registers its program/version/port numbers with portmapper

– Client contacts the portmapper at a fixed port with program/version numbers to get the

server port

– Different instances of the same service can be run on different computers at different ports

• Authentication

– request and reply have additional fields

Distributed Systems Page 89

– unix style (uid, gid), shared key for signing, Kerberos

Files interface in Sun XDR

Events and Notifications

• Idea behind the use of events

– One object can react to a change occurring in another object

• Events

– Notifications of events: objects that represent events

• asynchronous and determined by receivers what events are interested

– event types

• each type has attributes (information in it)

• subscription filtering: focus on certain values in the attributes (e.g. "buy" events, but

only "buy car" events)

• Publish-subscribe paradigm

– publish events to send

– subscribe events to receive

• Main characteristics in distributed event-based systems

– Heterogeneous: a way to standardize communication inheterogeneous

systems

• not designed to communicate directly

– Asynchronous: notifications are sent asynchronously

Distributed Systems Page 90

• no need for a publisher to wait for each subscriber--subscribers come and go

Dealing room system: allow dealers using computers to see the latest information about the

market prices of the stocks they deal in

Distributed Event Notification

• Distributed event notification

– decouple publishers from subscribers via an event service (manager)

• Architecture: roles of participating objects

– object of interest (usually changes in states are interesting)

– event

– notification

– subscriber

– observer object (proxy) [reduce work on the object of interest]

• forwarding

• filtering of events types and content/attributes

• patterns of events (occurrence of multiple events, not just one)

• mailboxes (notifications in batch es, subscriber might not be ready)

– publisher (object of interest or observer object)

Distributed Systems Page 91

• generates event notifications

Example: Distributed Event Notification

• Three cases

– Inside object without an observer: send notifications directly to the subscribers

– Inside object with an observer: send notification via the observer to the subscribers

– Outside object (with an observer)

1. An observer queries the object of interest in order to discover when events occur

2. The observer sends notifications to the subscribers

Case Study: Java RMI

Java Remote interfaces Shape and ShapeList and Java class ShapeListServant implements

interface
ShapeList

Distributed Systems Page 92

Distributed Systems Page 93

Java class ShapeListServer with main and Java client of ShapreList

Naming class of Java RMIregistry

Distributed Systems Page 94

Java class ShapeListServant implements interface ShapeList

Java class ShapeListServer with main method

Distributed Systems Page 95

-

Java class ShapeListServant implements interface ShapeList

Java RMI Callbacks

• Callbacks

– server notifying the clients of events

– why?

– how

• polling from clients increases overhead on server

• not up-to-date for clients to inform users

• remote object (callback object) on client for server to call

• client tells the server about the callback object, server put the client on a list

• server call methods on the callback object when events occur

– client might forget to remove itself from the list

• lease--client expire

Distributed Systems Page 96

The task of any operating system is to provide problem-oriented abstractions of the underlying

physical resources – the processors, memory, networks, and storage media. An operating system

such as UNIX (and its variants, such as Linux and Mac OS X) or Windows (and its variants,

such as XP, Vista and Windows 7) provides the programmer with, for example, files rather than

disk blocks, and with sockets rather than raw network access. It takes over the physical resources

on a single node and manages them to present these resource abstractions through the system-call

interface.

The operating system’s middleware support role, it is useful to gain some historical perspective

by examining two operating system concepts that have come about during the development of

distributed systems: network operating systems and distributed operating systems.

Both UNIX and Windows are examples of network operating systems. They have a networking

capability built into them and so can be used to access remote resources. Access is network-

transparent for some – not all – types of resource. For example, through a distributed file system

such as NFS, users have network-transparent access to files. That is, many of the files that users

access are stored remotely, on a server, and this is largely transparent to their applications.

An operating system that produces a single system image like this for all the resources in a
distributed system is called a distributed operating system

Middleware and the Operating System

What is a distributed OS?

Distributed Systems Page 97

• Presents users (and applications) with an integrated computing platform that hides

the individual computers.

• Has control over all of the nodes (computers) in the network and allocates their

resources to tasks without user involvement.

• In a distributed OS, the user doesn't know (or care) where his programs

are running.

• Examples:

• Cluster computer systems

• V system, Sprite

• In fact, there are no distributed operating systems in general use, only network operating

systems such as UNIX, Mac OS and Windows.

• to remain the case, for two main reasons.

The first is that users have much invested in their application software, which often meets their

current problem-solving needs; they will not adopt a new operating system that will not run their

applications, whatever efficiency advantages it offers.

The second reason against the adoption of distributed operating systems is that users tend to

prefer to have a degree of autonomy for their machines, even in a closely knit organization.

Combination of middleware and network OS

• No distributed OS in general use

– Users have much invested in their application software

– Users tend to prefer to have a degree of autonomy for their machines

• Network OS provides autonomy

• Middleware provides network-transparent access resource

The relationship between OS and Middleware

• Operating System

– Tasks: processing, storage and communication

– Components: kernel, library, user-level services

• Middleware

– runs on a variety of OS-hardware combinations

– remote invocations

Functions that OS should provide for middleware

The following figure shows how the operating system layer at each of two nodes supports a
common middleware layer in providing a distributed infrastructure for applications and services.

Distributed Systems Page 98

OS:
kernel, libraries & servers

Encapsulation: They should provide a useful service interface to their resources – that is, a set of

operations that meet their clients’ needs. Details such as management of memory and devices

used to implement resources should be hidden from clients.

Protection: Resources require protection from illegitimate accesses – for example, files are

protected from being read by users without read permissions, and device registers are protected

from application processes.

Concurrent processing: Clients may share resources and access them concurrently. Resource

managers are responsible for achieving concurrency transparency.

Communication: Operation parameters and results have to be passed to and from resource

managers, over a network or within a computer.

Scheduling: When an operation is invoked, its processing must be scheduled within the kernel or

server.

The core OS components

Computer &
network hardware

Computer &
network hardware

,

OS2

Processes, threads
communication, ...

OS1

Processes, threads,
communication, ...

Applications, services

Middleware

Distributed Systems Page 99

Process manager

Communication

manager

Thread manager Memorymanager

Supervisor

• Process manager

– Handles the creation of and operations upon processes.

• Thread manager

– Thread creation, synchronization and scheduling

• Communication manager

– Communication between threads attached to different processes on the same

computer

• Memory manager

– Management of physical and virtual memory

• Supervisor

– Dispatching of interrupts, system call traps and other exceptions

– control of memory management unit and hardware caches

processor and floating point unit register manipulations

Software and hardware service layers in distributed systems

platform

Middleware and Openness

• In an open middleware-based distributed system, the protocols used by each middleware

layer should be the same, as well as the interfaces they offer to applications.

Applications, services

Middleware

Operating system

Distributed Systems Page 100

Typical Middleware Services

• Communication

• Naming

• Persistence

• Distributed transactions

• Security

Middleware Models

• Distributed files

– Examples?

• Remote procedure call

– Examples?

• Distributed objects

– Examples?

• Distributed documents

– Examples?

• Others?

– Message-oriented middleware (MOM)

– Service oriented architecture (SOA)

– Document-oriented

Middleware and the Operating System

• Middleware implements abstractions that support network-wide programming. Examples:

• RPC and RMI (Sun RPC, Corba, Java RMI)

• event distribution and filtering (Corba Event Notification, Elvin)

• resource discovery for mobile and ubiquitous computing

• support for multimedia streaming

• Traditional OS's (e.g. early Unix, Windows 3.0)

– simplify, protect and optimize the use of local resources

• Network OS's (e.g. Mach, modern UNIX, Windows NT)

– do the same but they also support a wide range of communication standards and

Distributed Systems Page 101

enable remote processes to access (some) local resources (e.g. files).

DOS vs. NOS vs. Middleware Discussion

• What is good/bad about DOS?

– Transparency

– Other issues have reduced success.

– Problems are often socio-technological.

• What is good/bad about NOS?

– Simple.

– Decoupled, easy to add/remove.

– Lack of transparency.

• What is good/bad about middleware?

– Easy to make multiplatform.

– Easy to start something new.

• But this can also be bad.

Types of Distributed Oss

System Description Main Goal

DOS
Tightly-coupled

multi-processors

multicomputers

operating
and

system for
homogeneous

Hide and
resources

manage hardware

NOS
Loosely-coupled operating system for
heterogeneous multicomputers (LAN and

WAN)

Offer local services to remote

clients

Middleware Additional layer atop of NOS

implementing general-purpose services

Provide distribution transparency

Illegitimate access

• Maliciously contrived code

• Benign code

– contains a bug

– have unanticipated behavior

• Example: read and write in File System

– Illegal user vs. access right control

– Access the file pointer variable directly (setFilePointerRandomly) vs. type-safe

language

Distributed Systems Page 102

• Type–safe language, e.g. Java or Modula-3

• Non-type-safe language, e.g. C or C++

Kernel and Protection

• Kernel

– always runs

– complete access privileges for the physical resources

• Different execution mode

– An address space: a collection of ranges of virtual memory locations, in each of

which a specified combination of memory access rights applies, e.g.: read only or

read-write

– supervisor mode (kernel process) / user mode (user process)

– Interface between kernel and user processes: system call trap

• The price for protection

– switching between different processes take many processor cycles

– a system call trap is a more expensive operation than a simple method call

The System Clock

Process and thread

• Process

– A program in execution

– Problem: sharing between related activities are awkward and expensive

– Nowadays, a process consists of an execution environment together with one or

more threads

– an analogy at page 215

Distributed Systems Page 103

• Thread

– Abstraction of a single activity

– Benefits

• Responsiveness

• Resource sharing

• Economy

• Utilization of MP architectures

Execution environment

• the unit of resource management

• Consist of

– An address space

– Thread synchronization and communication resources such as semaphores and

communication interfaces (e.g. sockets)

– Higher-level resources such as open files and windows

• Shared by threads within a process

Address space

• Address space

– a unit of management of a process’s virtual memory

– Up to 232 bytes and sometimes up to 264 bytes

– consists of one or more regions

• Region

– an area of continuous virtual memory that is accessible by the threads of the

owning process

• The number of regions is indefinite

– Support a separate stack for each thread

– access mapped file

– Share memory between processes

• Region can be shared

– Libraries

– Kernel

– Shared data and communication

– Copy-on-write

•

Distributed Systems Page 104

N 2

 0

Creation of new process in distributed system

• Creating process by the operation system

– Fork, exec in UNIX

• Process creation in distributed system

– The choice of a target host

– The creation of an execution environment, an initial thread

Choice of process host

• Choice of process host

– running new processes at their originator’s computer

– sharing processing load between a set of computers

• Load sharing policy

– Transfer policy: situate a new process locally or remotely?

– Location policy: which node should host the new process?

• Static policy without regard to the current state of the system

• Adaptive policy applies heuristics to make their allocation decision

– Migration policy: when&where should migrate the running process?

• Load sharing system

– Centralized

– Hierarchical

– Decentralized

Creation of a new execution environment

 Initializing the address space

Auxiliary

regions

Stack

Heap

Text

Distributed Systems Page 105

– Statically defined format

– With respect to an existing execution environment, e.g. fork

• Copy-on-write scheme

Threads concept and implementation

Distributed Systems Page 106

Alternative server threading architectures

workers
per-connectionthreads per-objectthreads

I/O remote

objects

 remote

objects

I/O remote

objects

a. Thread-per-request b.Thread-per-connection c. Thread-per-object

Threads versus multiple processes

• Creating a thread is (much) cheaper than a process (~10-20 times)

• Switching to a different thread in same process is (much) cheaper (5-50 times)

• Threads within same process can share data and other resources more conveniently and
efficiently (without copying or messages)

• Threads within a process are not protected from each other

Client and server with threads

Distributed Systems Page 107

State associated with execution environments and threads

Threads implementation

Threads can be implemented:

– in the OS kernel (Win NT, Solaris, Mach)

– at user level (e.g. by a thread library: C threads, pthreads), or in the language

(Ada, Java).

+ lightweight - no system calls

+ modifiable scheduler

+ low cost enables more threads to be employed

- not pre-emptive

- can exploit multiple processors

- - page fault blocks all threads

– hybrid approaches can gain some advantages of both

- user-level hints to kernel scheduler

- hierarchic threads (Solaris 2)

- event-based (SPIN, FastThreads)

Implementation of invocation mechanisms

• Communication primitives

– TCP(UDP) Socket in Unix and Windows

– DoOperation, getRequest, sendReply in Amoeba

– Group communication primitives in V system

• Protocols and openness

– provide standard protocols that enable internetworking between middleware

– integrate novel low-level protocols without upgrading their application

– Static stack

• new layer to be integrated permanently as a ―driver‖

Distributed Systems Page 108

– Dynamic stack

• protocol stack be composed on the fly

• E.g. web browser utilize wide-area wireless link on the road and faster

Ethernet connection in the office

• Invocation costs

– Different invocations

– The factors that matter

• synchronous/asynchronous, domain transition, communication across a

network, thread scheduling and switching

• Invocation over the network

– Delay: the total RPC call time experienced by a client

– Latency: the fixed overhead of an RPC, measured by null RPC

– Throughput: the rate of data transfer between computers in a single RPC

– An example

• Threshold: one extra packet to be sent, might be an extra acknowledge

packet is needed

Invocations between address spaces

Support for communication and invocation

• The performance of RPC and RMI mechanisms is critical for effectivedistributed

systems.

Distributed Systems Page 109

– Typical times for 'null procedure call':

– Local procedure call < 1 microseconds

– Remote procedure call ~ 10 milliseconds

– 'network time' (involving about 100 bytes transferred, at 100 megabits/sec.)

accounts for only .01 millisecond; the remaining delays must be in OS and

middleware - latency, not communication time.

• Factors affecting RPC/RMI performance

– marshalling/unmarshalling + operation despatch at the server

– data copying:- application -> kernel space -> communication buffers

– thread scheduling and context switching:- including kernel entry

– protocol processing:- for each protocol layer

– network access delays:- connection setup, network latency

Improve the performance of RPC

• Memory sharing

– rapid communication between processes in the same computer

• Choice of protocol

– TCP/UDP

• E.g. Persistent connections: several invocations during one

– OS’s buffer collect several small messages and send them together

• Invocation within a computer

– Most cross-address-space invocation take place within a computer

– LRPC (lightweight RPC)

Distributed Systems Page 110

RPC delay against parameter size

PC delay

0 1000

2000

Pack

et

size

Requested data

size (bytes)

Distributed Systems Page 111

A client stub marshals the call arguments into a message, sends the request message and

receives and unmarshals the reply.

At the server, a worker thread receives the incoming request, or an I/O threadreceives the

request and passes it to a worker thread; in either case, the worker calls the appropriate

server stub.

The server stub unmarshals the request message, calls the designated procedure, and

marshals and sends the reply.

The following are the main components accounting for remote invocation delay, besides

network transmission times:

Marshalling: Marshalling and unmarshalling, which involve copying and converting data, create

a significant overhead as the amount of data grows.

Data copying: Potentially, even after marshalling, message data is copied several times in the

course of an RPC:

1. across the user–kernel boundary, between the client or server address space andkernel

buffers;

2. across each protocol layer (for example, RPC/UDP/IP/Ethernet);

3. between the network interface and kernel buffers.

Transfers between the network interface and main memory are usually handled by direct

memory access (DMA). The processor handles the other copies.

Packet initialization: This involves initializing protocol headers and trailers, including

checksums. The cost is therefore proportional, in part, to the amount of data sent.

Thread scheduling and context switching: These may occur as follows:

1. Several system calls (that is, context switches) are made during an RPC, as stubs

invoke the kernel’s communication operations.

2. One or more server threads is scheduled.

3. If the operating system employs a separate network manager process, then each

Send involves a context switch to one of its threads.

Waiting for acknowledgements: The choice of RPC protocol may influence delay, particularly

when large amounts of data are sent.

Distributed Systems Page 112

A lightweight remote procedure call

Bershad's LRPC

 Uses shared memory for interprocess communication

– while maintaining protection of the two processes

– arguments copied only once (versus four times for convenitional RPC)

 Client threads can execute server code

– via protected entry points only (uses capabilities)

 Up to 3 x faster for local invocations

Distributed Systems Page 113

Asynchronous operation

• Performance characteristics of the Internet

– High latencies, low bandwidths and high server loads

– Network disconnection and reconnection.

– outweigh any benefits that the OS can provide

• Asynchronous operation

– Concurrent invocations

• E.g., the browser fetches multiple images in a home page by concurrent

GET requests

– Asynchronous invocation: non-blocking call

• E.g., CORBA oneway invocation: maybe semantics, or collect result by a

separate call

• Persistent asynchronous invocations

– Designed for disconnected operation

– Try indefinitely to perform the invocation, until it is known to have succeeded or

failed, or until the application cancels the invocation

– QRPC (Queued RPC)

• Client queues outgoing invocation requests in a stable log

• Server queues invocation results

• The issues to programmers

– How user can continue while the results of invocations are still not known?

The following figure shows the potential benefits of interleaving invocations (such as HTTP

requests) between a client and a single server on a single-processor machine. In the serialized

case, the client marshals the arguments, calls the Send operation and then waits until the reply

from the server arrives – whereupon it Receives, unmarshals and then processes the results. After

this it can make the second invocation.

Distributed Systems Page 114

Times for serialized and concurrent invocations

In the concurrent case, the first client thread marshals the arguments and calls the Send

operation. The second thread then immediately makes the second invocation. Each thread waits

to receive its results. The total time taken is liable to be lower than in the serialized case, as the

figure shows. Similar benefits apply if the client threads make concurrent requests to several

servers, and if the client executes on a multiprocessor even greater throughput is potentially

possible, since the two threads’ processing can also be overlapped.

Operating System Architecture

▪ A key principle of distributed systems is openness.

▪ The major kernel architectures:

➢ Monolithic kernels

➢ Micro-kernels

▪ An open distributed system should make it possible to:

➢ Run only that system software at each computer that is necessary for its particular

role in the system architecture. For example, system software needs for PDA and

dedicated server are different. Loading redundant modules wastes memory

resources.

➢ Allow the software (and the computer) implementing any particular service to be

Distributed Systems Page 115

rroagm:

changed independent of other facilities.

➢ Allow for alternatives of the same service to be provided, when this is required to

suit different users or applications.

➢ Introduce new services without harming the integrity of existing ones.

▪ A guiding principle of operating system design:

➢ The separation of fixed resource management ―mechanisms― from resource

management ―policies‖, which vary from application to application and service to

service.

➢ For example, an ideal scheduling system would provide mechanisms that enable a

multimedia application such as videoconferencing to meet its real-time demands

The kernel would provide only the most basic mechanisms upon which the

general resource management tasks at a node are carried out.

➢ Server modules would be dynamically loaded as required, to implement the

required resourced management policies for the currently running applications.

➢ while coexisting with a non-real-time application such as web browsing.

▪ Monolithic Kernels

➢ A monolithic kernel can contain some server processes that execute within its

address space, including file servers and some networking.

➢ The code that these processes execute is part or the standard kernel configuration.

Monolithic kernel and microkernel

.......

.......

Key:

MonolithicKernel Microkernel

Server:

▪ Microkernel

Kernelcodeanddata: Dynamically loaded serverp

S4

S3

S2

S1

S4

.......
S3 S1 S2

Distributed Systems Page 116

➢ The microkernel appears as a layer between hardware layer and a layer consisting

of major systems.

If performance is the goal, rather than portability, then middleware may use the

facilities of the microkernel directly.

The role of the microkernel

Middleware

Languag

e support

subsyste

m

Languag

e support

subsyste

m

OS emulation

subsystem

....

Microkernel

Hardware

The microkernel supports middleware via subsystems

▪ Monolithic and Microkernel comparison

➢ The advantages of a microkernel

❖ Its extensibility

❖ Its ability to enforce modularity behind memory protectionboundaries.

❖ Its small kernel has less complexity.

➢ The advantages of a monolithic

❖ The relative efficiency with which operations can be invoked because

even invocation to a separate user-level address space on the same node is

more costly.

▪ Hybrid Approaches

➢ Pure microkernel operating system such as Chorus & Mach have changed over a

time to allow servers to be loaded dynamically into the kernel address space or

into a user-level address space.

In some operating system such as SPIN, the kernel and all dynamically loaded

modules grafted onto the kernel execute within a single address space

Distributed Systems Page 117

UNIT IV

Distributed File Systems: Introduction, File service Architecture, Case Study1: Sun Network File System,

Case Study 2: The Andrew File System.

Distributed Shared Memory: Introduction Design and Implementation issues, Sequential consistency and

Ivy case study, Release consistency and Munin case study, other consistency models.

DISTRIBUTED FILE SYSTEMS

A file system is responsible for the organization, storage, retrieval, naming, sharing, and

protection of files. File systems provide directory services, which convert a file name (possibly a

hierarchical one) into an internal identifier (e.g. inode, FAT index). They contain a

representation of the file data itself and methods for accessing it (read/write). The file system is

responsible for controlling access to the data and for performing low-level operations such as

buffering frequently used data and issuing disk I/O requests.

A distributed file system is to present certain degrees of transparency to the user and the system:

Access transparency: Clients are unaware that files are distributed and can access them in the

same way as local files are accessed.

Location transparency: A consistent name space exists encompassing local as well as remote

files. The name of a file does not give it location.

Concurrency transparency: All clients have the same view of the state of the file system. This

means that if one process is modifying a file, any other processes on the same system or remote

systems that are accessing the files will see the modifications in a coherent manner.

Failure transparency: The client and client programs should operate correctly after a server

failure.

Heterogeneity: File service should be provided across different hardware and operating system

platforms.

Scalability: The file system should work well in small environments (1 machine, a dozen

machines) and also scale gracefully to huge ones (hundreds through tens of thousands of

systems).

Replication transparency: To support scalability, we may wish to replicate files across

multiple servers. Clients should be unaware of this.

Migration transparency: Files should be able to move around without the client's knowledge.

Support fine-grained distribution of data: To optimize performance, we may wish to locate

Distributed Systems Page 118

individual objects near the processes that use them

Tolerance for network partitioning: The entire network or certain segments of it may be

unavailable to a client during certain periods (e.g. disconnected operation of a laptop). The file

system should be tolerant of this.

File Service Architecture

▪ An architecture that offers a clear separation of the main concerns in providing access
to files is obtained by structuring the file service as three components:

➢ A flat file service

➢ A directory service

➢ A client module.

▪ The relevant modules and their relationship is shown in Figure 5.

Figure 5. File service architecture

▪ The Client module implements exported interfaces by flat file and directory services

on server side.
▪ Responsibilities of various modules can be defined as follows:

➢ Flat file service:

❖ Concerned with the implementation of operations on the contents of file.
Unique File Identifiers (UFIDs) are used to refer to files in all requests
for

flat file service operations. UFIDs are long sequences of bits chosen
so that each file has a unique among all of the files in a distributed

system.

➢ Directory service:

❖ Provides mapping between text names for the files and their UFIDs.

Clients may obtain the UFID of a file by quoting its text name to

directory service. Directory service supports functions needed generate

directories, to add new files to directories.

➢ Client module:

❖ It runs on each computer and provides integrated service (flat file and

directory) as a single API to application programs. For example, in

UNIX hosts, a client module emulates the full set of Unix file

Distributed Systems Page 119

operations.

❖ It holds information about the network locations of flat-file and

directory server processes; and achieve better performance through

implementation of a cache of recently used file blocks at the client.

➢ Flat file service interface:

❖ Figure 6 contains a definition of the interface to a flat file service.

Figure 6. Flat file service operations

➢ Access control

❖ In distributed implementations, access rights checks have to be

performed at the server because the server RPC interface is an

otherwise unprotected point of access to files.

➢ Directory service interface

❖ Figure 7 contains a definition of the RPC interface to a directory service.

Figure 7. Directory service operations

Distributed Systems Page 120

➢ Hierarchic file system

❖ A hierarchic file system such as the one that UNIX provides consists of a

number of directories arranged in a tree structure.

➢ File Group

❖ A file group is a collection of files that can be located on any server or

moved between servers while maintaining the same names.

– A similar construct is used in a UNIX file system.

– It helps with distributing the load of file serving between several

servers.

– File groups have identifiers which are unique throughout the

system (and hence for an open system, they must be globally

unique).

To construct globally unique ID we use some unique attribute of the machine on which it

is created. E.g: IP number, even though the file group may move subsequently.

DFS: Case Studies

▪ NFS (Network File System)

➢ Developed by Sun Microsystems (in 1985)

➢ Most popular, open, and widely used.

➢ NFS protocol standardized through IETF (RFC 1813)

▪ AFS (Andrew File System)

➢ Developed by Carnegie Mellon University as part of Andrew distributed

computing environments (in 1986)

➢ A research project to create campus wide file system.

➢ Public domain implementation is available on Linux (LinuxAFS)

➢ It was adopted as a basis for the DCE/DFS file system in the Open Software

Foundation (OSF, www.opengroup.org) DEC (Distributed Computing

Environment

Distributed Systems Page 121

Sun Network File System

NFS architecture

Figure 8 shows the architecture of Sun NFS

▪ The file identifiers used in NFS are called file handles.

▪ A simplified representation of the RPC interface provided by NFS version 3 servers is

shown in Figure 9.

Figure 9. NFS server operations (NFS Version 3 protocol, simplified)

Distributed Systems Page 122

▪ NFS access control and authentication

➢ The NFS server is stateless server, so the user's identity and access rights must be
checked by the server on each request.

❖ In the local file system they are checked only on the file’s access
permission attribute.

➢ Every client request is accompanied by the userID and groupID

❖ It is not shown in the Figure 8.9 because they are inserted by the RPC

system.

➢ Kerberos has been integrated with NFS to provide a stronger and more

comprehensive security solution.

▪ Mount service

➢ Mount operation:

mount(remotehost, remotedirectory, localdirectory)
➢ Server maintains a table of clients who have mounted filesystems at that server.

➢ Each client maintains a table of mounted file systems holding:
< IP address, port number, file handle>

➢ Remote file systems may be hard-mounted or soft-mounted in a client computer.

➢ Figure 10 illustrates a Client with two remotely mounted file stores.

Figure 10. Local and remote file systems accessible on an NFS client

(root)

export

people

mou

nt

stude

nts

x

sta

ff

mou

nt

users

big jo bo . .
n b .

jim
ann

jane joe

Serve

r 1

Clien
t

(root)

Server 2

(root

)

. .

.
vmu
 u
s

nix r

n
f

s

Remot
e

Remote

Distributed systems Page 121

▪ Automounter

➢ The automounter was added to the UNIX implementation of NFS in order to

mount a remote directory dynamically whenever an ‘empty’ mount point is

referenced by a client.

❖ Automounter has a table of mount points with a reference to one or more

NFS servers listed against each.

❖ it sends a probe message to each candidate server and then uses the mount

service to mount the file system at the first server to respond.

➢ Automounter keeps the mount table small.

➢ Automounter Provides a simple form of replication for read-only file systems.

❖ E.g. if there are several servers with identical copies of /usr/lib then each

server will have a chance of being mounted at some clients.

▪ Server caching

➢ Similar to UNIX file caching for local files:

❖ pages (blocks) from disk are held in a main memory buffer cache until the

space is required for newer pages. Read-ahead and delayed-write

optimizations.

❖ For local files, writes are deferred to next sync event (30 second intervals).

❖ Works well in local context, where files are always accessed through the

local cache, but in the remote case it doesn't offer necessary

synchronization guarantees to clients.

➢ NFS v3 servers offers two strategies for updating the disk:

❖ Write-through - altered pages are written to disk as soon as they are

received at the server. When a write() RPC returns, the NFS client knows

that the page is on the disk.

❖ Delayed commit - pages are held only in the cache until a commit() call is

received for the relevant file. This is the default mode used by NFS v3

clients. A commit() is issued by the client whenever a file is closed.

▪ Client caching

➢ Server caching does nothing to reduce RPC traffic between client and server

❖ further optimization is essential to reduce server load in large networks.

Distributed systems Page 122

❖ NFS client module caches the results of read, write, getattr, lookup and

readdir operations

❖ synchronization of file contents (one-copy semantics) is not guaranteed

when two or more clients are sharing the same file.

➢ Timestamp-based validity check

❖ It reduces inconsistency, but doesn't eliminate it.

❖ It is used for validity condition for cache entries at the client:

(T - Tc < t) v (Tmclient = Tmserver)

❖ it is configurable (per file) but is typically set to 3 seconds for files and 30

secs. for directories.

❖ it remains difficult to write distributed

applications that share files with NFS.

❖ Other NFS optimizations

❖ Sun RPC runs over UDP by default (can use TCP if required).

❖ Uses UNIX BSD Fast File System with 8-kbyte blocks.

❖ reads() and writes() can be of any size (negotiated between client and server).

❖ The guaranteed freshness interval t is set adaptively for individual files to reduce

getattr() calls needed to update Tm.

❖ File attribute information (including Tm) is piggybacked in replies to all file

requests.

❖ NFS performance

❖ Early measurements (1987) established that:

❖ Write() operations are responsible for only 5% of server calls in typical

UNIX environments.

❖ hence write-through at server is acceptable.

❖ Lookup() accounts for 50% of operations -due to step-by-step pathname

Distributed systems Page 123

resolution necessitated by the naming and mounting semantics.

❖ More recent measurements (1993) show high performance.

❖ see www.spec.org for more recent measurements.

❖ NFS summary

❖ NFS is an excellent example of a simple, robust, high-performance distributed

service.

❖ Achievement of transparencies are other goals of NFS:

❖ Access transparency:

❖ The API is the UNIX system call interface for both localand

remote files.

❖ Location transparency:

❖ Naming of filesystems is controlled by client mount operations, but

transparency can be ensured by an appropriate system

configuration.

❖ Mobility transparency:

❖ Hardly achieved; relocation of files is not possible, relocation of

filesystems is possible, but requires updates to client

configurations.

❖ Scalability transparency:

❖ File systems (file groups) may be subdivided and allocated to

separate servers.

❖ Replication transparency:

– Limited to read-only file systems; for writable files, the SUN
Network Information Service (NIS) runs over NFS and is used to

replicate essential system files.

❖ Hardware and software operating system heterogeneity:

– NFS has been implemented for almost every known operating
system and hardware platform and is supported by a variety of

filling systems.

❖ Fault tolerance:

– Limited but effective; service is suspended if a server fails.

Recovery from failures is aided by the simple stateless design.
❖ Consistency:

– It provides a close approximation to one-copy semantics and meets
the needs of the vast majority of applications.

– But the use of file sharing via NFS for communication or close

coordination between processes on different computers cannot be

http://www.spec.org/

Distributed systems Page 124

recommended.

❖ Security:

– Recent developments include the option to use a secure RPC

implementation for authentication and the privacy and security of

the data transmitted with read and write operations.

– Efficiency:

❖ NFS protocols can be implemented for use in situations that

generate very heavy loads.

Case Study: The Andrew File System (AFS)

AFS differs markedly from NFS in its design and implementation. The differences are primarily

attributable to the identification of scalability as the most important design goal. AFS is designed

to perform well with larger numbers of active users than other distributed file systems. The key

strategy for achieving scalability is the caching of whole files in client nodes. AFS has two

unusual design characteristics:

Whole-file serving: The entire contents of directories and files are transmitted to client computers

by AFS servers (in AFS-3, files larger than 64 kbytes are transferred in 64-kbyte chunks).

Whole file caching: Once a copy of a file or a chunk has been transferred to a client computer it

is stored in a cache on the local disk. The cache contains several hundred of the files most

recently used on that computer. The cache is permanent, surviving reboots of the client

computer. Local copies of files are used to satisfy clients’ open requests in preference to remote

copies whenever possible.

▪ Like NFS, AFS provides transparent access to remote shared files for UNIX programs

running on workstations.

▪ AFS is implemented as two software components that exist at UNIX processes called

Vice and Venus.

Scenario • Here is a simple scenario illustrating the operation of AFS:

1. When a user process in a client computer issues an open system call for a file in the shared

-file space and there is not a current copy of the file in the local cache, the server holding the

file is located and is sent a request for a copy of the file.

2. The copy is stored in the local UNIX file system in the client computer. The copy is then

opened and the resulting UNIX file descriptor is returned to the client.

Distributed systems Page 125

User Venus
program

UNIX kernel
Vice

UNIX kernel

User Venus

program

UNIX kernel

Network

Vice

User
Venus
program

UNIX kernel

UNIX kernel

3. Subsequent read, write and other operations on the file by processes in the client

computer are applied to the local copy.

4. When the process in the client issues a close system call, if the local copy has been

updated its contents are sent back to the server. The server updates the file contents and the

timestamps on the file. The copy on the client’s local disk is retained in caseisneeded again by

a user-level process on the same workstation.

Figure 11. Distribution of processes in the Andrew File System

Workstations Servers

▪ The files available to user processes running on workstations are either local or shared.

▪ Local files are handled as normal UNIX files.

▪ They are stored on the workstation’s disk and are available only to local user processes.

▪ Shared files are stored on servers, and copies of them are cached on the local disks of

workstations.

▪ The name space seen by user processes is illustrated in Figure 12.

Figure 12. File name space seen by clients of AFS

Distributed systems Page 126

Venus

UNIX file
systemcalls

Non-local file
operations

Local
disk

UNIX kernel

UNIXfilesystem

User

program

Venus

/ (root)

tmp bin . . . vmunix cmu

bin

Symbolic

links

Local Shared

▪ The UNIX kernel in each workstation and server is a modified version of BSD UNIX.

▪ The modifications are designed to intercept open, close and some other file system calls when

they refer to files in the shared name space and pass them to the Venus process in the client

computer. (Figure 13)

Figure 13. System call interception in AFS

Workstation

▪ Figure 14 describes the actions taken by Vice, Venus and the UNIX kernel when a user process

issues system calls.

Distributed systems Page 127

ame in

Figure 14. implementation of file system calls in AFS

User process UNIX kernel Venus Net Vice

open(FileNam e,
mode)

read(FileDesc

If FileName
refers to a file in
shared file space,
pass the request to

Venus.

Open the local file
and return the file
descriptor to the
application.

Check list of
files in local
cache. If not present
or there is no
valid callback
promis,e
send a request for
 the file to
the Vice server that
 is
custodian of the
volume containing
 the
file.

Place the copy of the
file in the local file
system, enter

Transfer a copy of the

file and a

callback promiseto
the workstation. Log
the callback
promise.

r
le
iupnf

t
gf
oet
r
hr
,,)

 Perform a
normal UNIX

its local local
cache the

write(FileDes

criptor,

Buffer,

length)

read operation on
the local copy.

Perform a
normal
UNIX write
operation on the local
copy.

list and
the local
to UNIX.

return name

close(FileDescriptor) Close the local copy

a
V
n
e
d
nus th

n
at
otify tlhocealficleophyashabseen

closed.

If the

copy to the Vice server

b
se
e
n
e
d
n

a
changed,

that is the custodian of the file.
Replace the file
contents and send a
callback to all other clients
holdin gca llback
promiseson the file.

Distributed Systems Page 128

▪ Figure 15 shows the RPC calls provided by AFS servers for operations on files.

Figure 15. The main components of the Vice service interface

Other aspects

AFS introduces several other interesting design developments and refinements

that we outline here, together with a summary of performance evaluation

results:

1. UNIX kernel modifications

2. Location database

3. Threads

4. Read-only replicas

5. Bulk transfers

6. Partial file caching

7. Performance

8. Wide area support

Naming Services

Which one is easy for humans and machines? and why?

74.125.237.83 or google.com

 128.250.1.22 or distributed systems

website 128.250.1.25 or Prof. Buyya

 Disk 4, Sector 2, block 5 OR /usr/raj/hello.c

Introduction

 In a distributed system, names are used to refer to a wide variety of resources such as:

 Computers, services, remote objects, and files, as well as users.

 Naming is fundamental issue in DS design as it facilitates communication and

resource sharing.

 A name in the form of URL is needed to access a specific web page.

 Processes cannot share particular resources managed by a computer

Distributed Systems Page 129

system unless they can name them consistently

 Users cannot communicate within one another via a DS unless they can

name one another, with email address.

 Names are not the only useful means of identification: descriptive attributes are another.

What are Naming Services?

 How do Naming Services facilitate communication and resource sharing?

– An URL facilitates the localization of a resource exposed on the Web.

 e.g., abc.net.au means it is likely to be an Australian entity?

– A consistent and uniform naming helps processes in a distributed

system to interoperate and manage resources.

 e.g., commercials use .com; non-profit organizations use .org

– Users refers to each other by means of their names (i.e. email) rather

than their system ids

– Naming Services are not only useful to locate resources but also to

gather additional information about them such as attributes

What are Naming Services?

In a Distributed System, a Naming Service is a specific service whose aim is to provide a

consistent and uniform naming of resources, thus allowing other programs or services to

localize them and obtain the required metadata for interacting with them.

Key benefits

– Resource localization

– Uniform naming

– Device independent address (e.g., you can move domain name/web site

from one server to another server seamlessly).

The role of names and name services

 Resources are accessed using identifier or reference

– An identifier can be stored in variables and retrieved from tables quickly

– Identifier includes or can be transformed to an address for anobject

 E.g. NFS file handle, Corba remote object reference

– A name is human-readable value (usually a string) that can be

Distributed Systems Page 130

resolved to an identifier or address

 Internet domain name, file pathname, process number

 E.g ./etc/passwd, http://www.cdk3.net/

 For many purposes, names are preferable to identifiers

– because the binding of the named resource to a physical location is

deferred and can be changed

– because they are more meaningful to users

 Resource names are resolved by name services

– to give identifiers and other useful attributes

Requirements for name spaces

 Allow simple but meaningful names to be used

 Potentially infinite number of names

 Structured

– to allow similar subnames without clashes

– to group related names

 Allow re-structuring of name trees

– for some types of change, old programs should continue to work

 Management of trust

Composed naming domains used to access a resource from a URL

A key attribute of an entity that is usually relevant in a distributed system is its address. For example:

• The DNS maps domain names to the attributes of a host computer: its IP address, the type of entry

http://www.cdk3.net/

Distributed Systems Page 131

(for example, a reference to a mail server or another host) and, for example, the length of time the

host’s entry will remain valid.

• The X500 directory service can be used to map a person’s name onto attributes including their email

address and telephone number.

• The CORBA Naming Service maps the name of a remote object onto its remote object reference,

whereas the Trading Service maps the name of a remote object onto its remote object reference,

together with an arbitrary number of attributes describing the object in terms understandable by human

users.

Name Services and the Domain Name System

 A name service stores a collection of one or more naming contexts, sets of bindings between

textual names and attributes for objects such as computers, services, and users.

 The major operation that a name service supports is to resolve names.

Uniform Resource Identifiers

Uniform Resource Identifiers (URIs) came about from the need to identify resources on the Web, and

other Internet resources such as electronic mailboxes. An important goal was to identify resources in a

coherent way, so that they could all be processed by common software such as browsers. URIs are

‘uniform’ in that their syntax incorporates that of indefinitely many individual types of resource

identifiers (that is, URI schemes), and there are procedures for managing the global namespace of

schemes. The advantage of uniformity is that it eases the process of introducing new types of identifier,

as well as using existing types of identifier in new contexts, without disrupting existing usage.

Uniform Resource Locators: Some URIs contain information that can be used to locate and access a

resource; others are pure resource names. The familiar term Uniform Resource Locator (URL) is often

used for URIs that provide location information and specify the method for accessing the resource.

Uniform Resource Names: Uniform Resource Names (URNs) are URIs that are used as pure resource

names rather than locators. For example, the URI:

mid:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com

Navigation

Navigation is the act of chaining multiple Naming Services in order to resolve a single name to the

corresponding resource.

 Namespaces allows for structure in names.

 URLs provide a default structure that decompose the location of a resource in

mailto:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com
mailto:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com

Distributed Systems Page 132

– protocol used for retrieval

– internet end point of the service exposing the resource

– service specific path

 This decomposition facilitates the resolution of the name into the corresponding resource

 Moreover, structured namespaces allows for iterative navigation…

Iterative navigation

Reason for NFS iterative name resolution

This is because the file service may encounter a symbolic link (i.e. an alias) when resolving a name. A

symbolic link must be interpreted in the client’s file system name space because it may point to a file in

a directory stored at another server. The client computer must determine which server this is, because

only the client knows its mount points

Server controlled navigation

 In an alternative model, name server coordinates naming resolution and returns the results to the

client. It can be:

– Recursive:

 it is performed by the naming server

 the server becomes like a client for the next server

 this is necessary in case of client connectivity constraints

– Non recursive:

 it is performed by the client or the first server

 the server bounces back the next hop to its client

Non-recursive and recursive server-controlled navigation

Distributed Systems Page 133

DNS offers recursive navigation as an option, but iterative is the standard technique.

Recursive navigation must be used in domains that limit client access to their DNS

information for security reasons.

7. Application

The Domain Name System is a name service design whose main naming database is used across

the Internet.

This original scheme was soon seen to suffer from three major shortcomings:

• It did not scale to large numbers of computers.

• Local organizations wished to administer their own naming systems.

• A general name service was needed – not one that serves only for looking up

Distributed Systems Page 134

computer addresses.

Domain names • The DNS is designed for use in multiple implementations, each of

which may have its own name space. In practice, however, only one is in widespread use,

and that is the one used for naming across the Internet. The Internet DNS name space is

partitioned both organizationally and according to geography. The names are written with

the highest-level domain on the right. The original top-level organizational domains (also

called generic domains) in use across the Internet were:

com – Commercial organizations

edu – Universities and other educational institutions

gov – US governmental agencies

mil – US military organizations

net – Major network support centres

org – Organizations not mentioned above

int – International organizations

New top-level domains such as biz and mobi have been added since the early 2000s. A

full list of current generic domain names is available from the Internet Assigned Numbers

Authority [www.iana.org I]. In addition, every country has its own domains:

us – United States

uk – United Kingdom

fr – France

DNS - The Internet Domain Name System

 A distributed naming database (specified in RFC 1034/1305)

 Name structure reflects administrative structure of the Internet

 Rapidly resolves domain names to IP addresses

– exploits caching heavily

– typical query time ~100 milliseconds

 Scales to millions of computers

– partitioned database

– caching

– Resilient to failure of a server

– Replication

http://www.iana.org/

Distributed Systems Page 135

Basic DNS algorithm for name resolution (domain name -> IP number)

• Look for the name in the local cache

• Try a superior DNS server, which responds with:

– another recommended DNS server

– the IP address (which may not be entirely up to date)

DNS name servers: Hierarchical organisation

Note: Name server names are in italics, and the corresponding domains are in

parentheses. Arrows denote name server entries

DNS in typical operation

DNS server functions and configuration

 Main function is to resolve domain names for computers, i.e. to get their IP addresses

– caches the results of previous searches until they pass their 'time to live'

Distributed Systems Page 136

 Other functions:

– get mail host for a domain

– reverse resolution - get domain name from IP address

– Host information - type of hardware and OS

– Well-known services - a list of well-known services offered by a host

– Other attributes can be included (optional)

DNS resource records

The DNS architecture allows for recursive navigation as well as iterative navigation. The resolver

specifies which type of navigation is required when contacting a name server. However,

name servers are not bound to implement recursive navigation. As was pointed out above, recursive

navigation may tie up server threads, meaning that other requests might be delayed.

The data for a zone starts with an SOA-type record, which contains the zone parameters that specify,

for example, the version number and how often secondaries should refresh their copies. This is

followed by a list of records of type NS specifying the name servers for the domain and a list of records

of type MX giving the domain names of mail hosts, each prefixed by a number expressing its

preference. For example, part of the database for the domain dcs.qmul.ac.uk at one point is shown in

the following figure where the time to live 1D means 1 day.

Distributed Systems Page 137

The majority of the remainder of the records in a lower-level zone like dcs.qmul.ac.uk

will be of type A and map the domain name of a computer onto its IP address. They may

contain some aliases for the well-known services, for example:

If the domain has any subdomains, there will be further records of type NS specifying

their name servers, which will also have individual A entries. For example, at one point

the database for qmul.ac.uk contained the following records for the name servers in its

subdomain

dcs.qmul.ac.uk:

DNS issues

 Name tables change infrequently, but when they do, caching can result in the

delivery of stale data.

– Clients are responsible for detecting this and recovering

 Its design makes changes to the structure of the name space difficult. For example:

– merging previously separate domain trees under a new root

– moving subtrees to a different part of the structure (e.g. if Scotland

became a separate country, its domains should all be moved to a new

country-level domain.)

 Directory service: 'yellow pages' for the resources in a

network Retrieves the set of names that satisfy a

given description

– e.g. X.500, LDAP, MS Active Directory Services

Distributed Systems Page 138

–

-

 (DNS holds some descriptive data, but:

• the data is very incomplete

DNS isn't organised to search it)

 Discovery service:- a directory service that also:

is automatically updated as the network configuration

changes meets the needs of clients in spontaneous

networks (Section 2.2.3)

discovers services required by a client (who may be mobile) within the

current scope, for example, to find the most suitable printing service for

image files after arriving at a hotel.

Examples of discovery services: Jini discovery service, the 'service

location protocol', the 'simple service discovery protocol' (part of

UPnP), the 'secure discovery service'.–

–

The name services store collections of <name, attribute> pairs, and how the attributes are looked up

from a name. It is natural to consider the dual of this arrangement, in which attributes are used as

values to be looked up. In these services, textual names can be considered to be just another attribute.

Sometimes users wish to find a particular person or resource, but they do not know its name, only some

of its other attributes.

For example, a user may ask: ‘What is the name of the user with telephone number 020-555 9980?’

Likewise, sometimes users require a service, but they are not concerned with what system entity

supplies that service, as long as the service is conveniently accessible.

For example, a user might ask, ‘Which computers in this building are Macintoshes running the Mac OS

Distributed Systems Page 139

X operating system?’ or ‘Where can I print a high-resolution colour image?’

A service that stores collections of bindings between names and attributes and that looks up entries that

match attribute-based specifications is called a directory service.

Examples are Microsoft’s Active Directory Services, X.500 and its cousin LDAP, Univers and Profile.

Directory services are sometimes called yellow pages services, and conventional name services are

correspondingly called white pages services, in an analogy with the traditional types of telephone

directory. Directory services are also sometimes known as attribute-based name services.

A directory service returns the sets of attributes of any objects found to match some specified

attributes. So, for example, the request ‘TelephoneNumber = 020 5559980’ might return {‘Name =

John Smith’, ‘TelephoneNumber = 020 555 9980’, ‘emailAddress = john@dcs.gormenghast.ac.uk’,

...}.

The client may specify that only a subset of the attributes is of interest – for example, just the email

addresses of matching objects. X.500 and some other directory services also allow objects to be looked

up by conventional hierarchic textual names. The Universal Directory and Discovery Service (UDDI),

which was presented in Section 9.4, provides both white pages and yellow pages services to provide

information about organizations and the web services they offer.

UDDI aside, the term discovery service normally denotes the special case of a directory service for

services provided by devices in a spontaneous networking environment. As Section 1.3.2 described,

devices in spontaneous networks are liable to connect and disconnect unpredictably. One core

difference between a discovery service and other directory services is that the address of a directory

service is normally well known and preconfigured in clients, whereas a device entering a spontaneous

networking environment has to resort to multicast navigation, at least the first time it accesses the local

discovery service.

Attributes are clearly more powerful than names as designators of objects: programs can be written to

select objects according to precise attribute specifications where names might not be known. Another

advantage of attributes is that they do not expose the structure of organizations

to the outside world, as do organizationally partitioned names. However, the relative simplicity of use

of textual names makes them unlikely to be replaced by attribute-based naming in many applications.

Discovery service

• A database of services with lookup based on

service description or type, location and

mailto:john@dcs.gormenghast.ac.uk
mailto:john@dcs.gormenghast.ac.uk

Distributed Systems Page 140

other criteria, E.g.

1. Find a printing service in

this hotel compatible with a

Nikon camera

2. Send the video from my camera to the digital TV in my room.

• Automatic registration of new services

• Automatic connection of guest's clients to the discovery service

Global Name Service (GNS)

 Designed and implemented by Lampson and colleagues at the DEC Systems

Research Center (1986)

 Provide facilities for resource location, email addressing and authentication

 When the naming database grows from small to large scale, the structure of

name space may change

the service should accommodate it

 Cache consistency ?

The GNS manages a naming database that is composed of a tree of directories holding names and

values. Directories are named by multi-part pathnames referred to a root, or relative to a working

directory, much like file names in a UNIX file system. Each directory is also assigned an integer,

which serves as a unique directory identifier (DI). A directory contains a list of names and

references. The values stored at the leaves of the directory tree are organized into value trees, so

that the attributes associated with names can be structured values.

Names in the GNS have two parts: <directory name, value name>. The first part identifies a

directory; the second refers to a value tree, or some portion of a value tree.

GNS Structure

 Tree of directories holding names and values

 Muti-part pathnames refer to the root or relative working directory (like Unix file system)

 Unique Directory Identifier (DI)

 A directory contains list of names and references

 Leaves of tree contain value trees (structured values)

GNS directory tree and value tree

Distributed Systems Page 141

Accommodating changes

 How to integrate naming trees of two previously separate GNS services

 But what is for ‘/UK/AC/QMV, Peter.Smith’ ?

Using DI to solve changes

 Using the name ‘#599/UK/AC/QMV, Peter.Smith’

Distributed Systems Page 142

Restructuring of

database

 Using symbolic links

X500 Directory Service

X.500 is a directory service used in the same way as a conventional name service, but it is primarily

used to satisfy descriptive queries and is designed to discover the names and attributes of other users

or system resources. Users may have a variety of requirements for searching and browsing in a

directory of network users, organizations and system resources to obtain information about the entities

that the directory contains. The uses for such a service are likely to be quite diverse. They range from

enquiries that are directly analogous to the use of telephone directories, such as a simple ‘white pages’

access to obtain a user’s electronic mail address or a ‘yellow pages’ query aimed, for example, at

obtaining the names and telephone numbers of garages specializing in the repair of a particular make

of car, to the use of the directory to access personal details such as job roles, dietary habits or even

photographic images of the individuals.

 Standard of ITU and ISO organizations

 Organized in a tree structure with name nodes as in the case of other name servers

Distributed Systems Page 143

 A wide range of attributes are stored in each node

 Directory Information Tree (DIT)

 Directory Information Base (DIB)

X.500 service architecture

The data stored in X.500 servers is organized in a tree structure with named nodes, as in the case of

the other name servers discussed in this chapter, but in X.500 a wide range of attributes are stored at

each node in the tree, and access is possible not just by name but also by searching for entries with any

required combination of attributes. The X.500 name tree is called the Directory Information Tree

(DIT), and the entire directory structure including the data associated with the nodes, is called the

Directory Information Base (DIB). There is intended to be a single integrated DIB containing

information provided by organizations throughout the world, with portions of the DIB located in

individual X.500 servers. Typically, a medium-sized or large organization would provide at least one

server. Clients access the directory by establishing a connection to a server and issuing access

requests. Clients can contact any server with an enquiry. If the data required are not in the segment of

the DIB held by the contacted server, it will either invoke other servers to resolve the query or redirect

the client to another server.

 Directory Server Agent (DSA)

 Directory User Agent (DUA)

In the terminology of the X.500 standard, servers are Directory Service Agents (DSAs), and their

clients are termed Directory User Agents (DUAs). Each entry in the DIB consists of a name and a set

of attributes. As in other name servers, the full name of an entry corresponds to a path through the DIT

from the root of the tree to the entry. In addition to full or absolute names, a DUA can establish a

context, which includes a base node, and then use shorter relative names that give the path from the

base node to the named entry.

Distributed Systems Page 144

An X.500 DIB Entry

Part of the X.500 Directory Information Tree

The data structure for the entries in the DIB and the DIT is very flexible. A DIB entry consists of a set

of attributes, where an attribute has a type and one or more values. The type of each attribute is

denoted by a type name (for example, countryName, organizationName, commonName,

telephoneNumber, mailbox, objectClass). New attribute types can be defined if they are required. For

each distinct type name there is a corresponding type definition, which includes a type description and

a syntax definition in the ASN.1 notation (a standard notation for syntax definitions) defining

representations for all permissible values of the type.

DIB entries are classified in a manner similar to the object class structures found in object- oriented

programming languages. Each entry includes an objectClass attribute, which determines the class (or

classes) of the object to which an entry refers. Organization, organizationalPerson and document are

all examples of objectClass values. Further classes can be defined as they are required. The definition

of a class determines which attributes are mandatory and which are optional for entries of the given

class. The definitions of classes are organized in an inheritance hierarchy in which all classes except

one (called topClass) must contain an objectClass attribute, and the value of the objectClass attribute

must be the names of one or more classes. If there are several objectClass values, the object inherits

the mandatory and optional attributes of each of the classes.

Distributed Systems Page 145

Administration and updating of the DIB • The DSA interface includes operations for adding,

deleting and modifying entries. Access control is provided for both queries and updating operations,

so access to parts of the DIT may be restricted to certain users or classes of user

Lightweight Directory Access Protocol • X.500’s assumption that organizations would provide

information about themselves in public directories within a common system has proved largely

unfounded. group at the University of Michigan proposed a more lightweight approach called the

Lightweight Directory Access Protocol (LDAP), in which a DUA accesses X.500 directory services

directly over TCP/IP instead of the upper layers of the ISO protocol stack.

DISTRIBUTED SHARED MEMORY

Distributed shared memory (DSM) is an abstraction used for sharing data between computers that do

not share physical memory. Processes access DSM by reads and updates to what appears to be

ordinary memory within their address space. However, an underlying runtime system ensures

transparently that processes executing at different computers observe the updates made by one

another.

The main point of DSM is that it spares the programmer the concerns of message passing when

writing applications that might otherwise have to use it. DSM is primarily a tool for parallel

Distributed Systems Page 146

applications or for any distributed application or group of applications in which individual shared

data items can be accessed directly. DSM is in general less appropriate in client-server systems,

where clients normally view server-held resources as abstract data and access them by request(for

reasons of modularity and protection).

Message passing cannot be avoided altogether in a distributed system: in the absence if physically

shared memory, the DSM runtime support has to send updates in messages between computers. DSM

systems manage replicated data: each computer has a local copy of recently accessed data items stored

in DSM, for speed of access.

In distributed memory multiprocessors and clusters of off-the-shelf computing components (see

Section 6.3), the processors do not share memory but are connected by a very high-speed network.

These systems, like general-purpose distributed systems, can scale to much greater numbers of

processors than a shared-memory multiprocessor’s 64 or so. A central question that has been pursued

by the DSM and multiprocessor research communities is whether the investment in knowledge of

shared memory algorithms and the associated software can be directly transferred to a more scalable

distributed memory architecture.

Message passing versus DSM

As a communication mechanism, DSM is comparable with message passing rather than with request-

reply-based communication, since its application to parallel processing, in particular, entails the use of

asynchronous communication. The DSM and message passing approaches to programming can be

Distributed Systems Page 147

contrasted as follows:

Programming model:

Under the message passing model, variables have to be marshalled from one process, transmitted and

unmarshalled into other variables at the receiving process. By contrast, with shared memory

the processes involved share variables directly, so no marshalling is necessary – even of pointers to

shared variables – and thus no separate communication operations are necessary.

Efficiency :

Experiments show that certain parallel programs developed for DSM can be made to perform about as

well as functionally equivalent programs written for message passing platforms on the same hardware –

at least in the case of relatively small numbers of computers (ten or so). However, this result cannot be

generalized. The performance of a program based on DSM depends upon many factors, as we shall

discuss below – particularly the pattern of data sharing. Implementation approaches to DSM

Distributed shared memory is implemented using one or a combination of specialized hardware,

conventional paged virtual memory or middleware:

Hardware:Shared-memory multiprocessor architectures based on a NUMA architecture rely on specialized

hardware to provide the processors with a consistent view of shared memory. They handle

memory LOAD and STORE instructions by communicating with remote memory and cache modules as

necessary to store and retrieve data.

Paged virtual memory:

Many systems, including Ivy and Mether , implement DSM as a region of virtual

memory occupying the same address range in the address space of every

participating process. #include "world.h"

struct shared { int

a, b; }; Program

Writer:

main()

{

struct shared *p;

methersetup(); /* Initialize the Mether

Distributed Systems Page 148

runtime */ p = (struct shared

*)METHERBASE;

/* overlay structure on METHER

segment */

p->a = p->b = 0; /* initialize fields to

zero */

while(TRUE){ /* continuously update structure

fields */ p –>a = p –>a + 1;

p –>b = p –>b - 1;

}

}

Program Reader:

main()

{

struct shared *p;

methersetup();

p = (struct shared *)METHERBASE;

while(TRUE){ /* read the fields once every second */

printf("a = %d, b = %d\n", p –>a, p –>b);

sleep(1);

}

}

Middleware:

Some languages such as Orca, support forms of DSM without any hardware or paging support, in a

platform-neutral way. In this type of implementation, sharing is implemented by communication

between instances of the user-level support layer in clients and servers. Processes make calls to this

layer when they access data items in DSM. The instances of this layer at the different computers

access local data items and communicate as necessary to maintain consistency.

Distributed Systems Page 149

Design and implementation issues

The synchronization model used to access DSM consistently at the application level; the DSM

consistency model, which governs the consistency of data values accessed from different computers;

the update options for communicating written values between computers; the granularity of sharing in

a DSM implementation; and the problem of thrashing.

Structure

A DSM system is just such a replication system. Each application process is presented with some

abstraction of a collection of objects, but in this case the ‘collection’ looks more or less like memory.

That is, the objects can be addressed in some fashion or other. Different approaches to DSM vary in

what they consider to be an ‘object’ and in how objects are addressed. We consider three approaches,

which view DSM as being composed respectively of contiguous bytes, language-level objects or

immutable data items.

Byte-oriented

This type of DSM is accessed as ordinary virtual memory – a contiguous array of bytes. It is the

view illustrated above by the Mether system. It is also the view of many other DSM systems,

including Ivy.It allows applications (and language implementations) to impose whatever data

structures they want on the shared memory. The shared objects are directly addressible memory

locations (in practice, the shared locations may be multi-byte words rather than individual bytes). The

only operations upon those objects are read (or LOAD) and write (or STORE). If x and y are two

memory locations, then we denote instances of these operations as follows:

Object-oriented

The shared memory is structured as a collection of language-level objects with higher-level semantics

than simple read / write variables, such as stacks and dictionaries. The contents of the shared memory

are changed only by invocations upon these objects and never by direct access to their member

variables. An advantage of viewing memory in this way is that object semantics can be utilized when

enforcing consistency.

Immutable data

When reading or taking a tuple from tuple space, a process provides a tuple specification

and the tuple space returns any tuple that matches that specification – this is a type of

Distributed Systems Page 150

associative addressing. To enable processes to synchronize their activities, the read and take

operations both block until there is a matching tuple in the tuple space.

Synchronization model

Many applications apply constraints concerning the values stored in shared memory. This is as true of

applications based on DSM as it is of applications written for sharedmemory multiprocessors (or

indeed for any concurrent programs that share data, such as operating system kernels and multi-

threaded servers). For example, if a and b are two variables stored in DSM, then a constraint might be

that a=b always. If two or moreprocesses execute the following code:

a:= a + 1;

b := b + 1;

then an inconsistency may arise. Suppose a and b are initially zero and that process 1gets as far as

setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 1.

Consistency model

The local replica manager is implemented by a combination of middleware (the DSM runtime layer in

each process) and the kernel. It is usual for middleware to perform the majority of DSM processing.

Even in a page-based DSM implementation, the kernel usually provides only basic page mapping,

page-fault handling and communication mechanisms and middleware is

responsible for implementing the page-sharing policies. If DSM segments are persistent, then one or

more storage servers (for example, file servers) will also act as replica managers.

Distributed Systems Page 151

Sequential consistency

A DSM system is said to be sequentially consistent if for any execution there is some interleaving of

the series of operations issued by all the processes that satisfies the following two criteria:

SC1: The interleaved sequence of operations is such that if R(x) a occurs in the sequence, then

either the last write operation that occurs before it in the interleaved sequence is W(x) a, or no write

operation occurs before it and a is the initial value of x.

SC2: The order of operations in the interleaving is consistent with the program order in which

each individual client executed them.

Coherence

Coherence is an example of a weaker form of consistency. Under coherence, every process agrees on

the order of write operations to the same location, but they do not necessarily agree on the ordering of

write operations to different locations. We can think of coherence as sequential consistency on a

locationby- location basis. Coherent DSM can be implemented by taking a protocol for implementing

Distributed Systems Page 152

sequential consistency and applying it separately to each unit of replicated data – for example, each

page.

Weak consistency

This model exploits knowledge of synchronization operations in order to relax memory consistency,

while appearing to the programmer to implement sequential consistency (at least, under certain

conditions that are beyond the scope of this book). For example, if the programmer uses a lock to

implement a critical section, then a DSM system can assume that no other process may access the data

items accessed under mutual exclusion within it. It is therefore redundant for the DSM system to

propagate updates to these items until the process leaves the critical section. While items are left with

‘inconsistent’ values some of the time, they are not accessed at those points; the execution appears to

be sequentially consistent.

Update options

Two main implementation choices have been devised for propagating updates made by one process to

the others: write-update and write-invalidate. These are applicable to a variety of DSM consistency

models, including sequential consistency. In outline, the options are as follows:

Write-update: The updates made by a process are made locally and multicast to all other replica

managers possessing a copy of the data item, which immediately modify the data read by local

processes. Processes read the local copies of data items, without the need for communication. In

addition to allowing multiple readers, several processes may write the same data item at the same time;

this is known as multiple-reader/multiple-writer sharing.

Distributed Systems Page 153

Write-invalidate: This is commonly implemented in the form of multiple-reader/ single-writer sharing.

At any time, a data item may either be accessed in read-only mode by one or more processes, or it may

be read and written by a single process. An item that is currently accessed in read-only mode can be

copied indefinitely to other processes. When a process attempts to write to it, a multicast message is

first sent to all other copies to invalidate them and this is acknowledged before the write can take

place; the other processes are thereby prevented from reading stale data (that is, data that are not up to

date). Any processes attempting to access the data item are blocked if a writer exists.

Granularity

An issue that is related to the structure of DSM is the granularity of sharing. Conceptually, all

processes share the entire contents of a DSM. As programs sharing DSM execute, however, only

certain parts of the data are actually shared and then only for certain times during the execution. It

would clearly be very wasteful for the DSM implementation always to transmit the entire contents of

DSM as processes access and update it.

Thrashing

A potential problem with write-invalidate protocols is thrashing. Thrashing is said to occur where the

DSM runtime spends an inordinate amount of time invalidating and transferring shared data

compared with the time spent by application processes doing useful work. It occurs when several

processes compete for the same data item, or for falsely shared data items.

CONSISTENCY MODELS

Distributed Systems Page 154

Models of memory consistency can be divided into uniform models, which do not distinguish between

types of memory access, and hybrid models, which do distinguish between ordinary and

synchronization accesses (as well as other types of access).

Other uniform consistency models include:

Causal consistency: Reads and writes may be related by the happened-before relationship . This is

defined to hold between memory operations when either (a) they are made by the same process; (b) a

process reads a value written by another process; or (c) there exists a sequence of such operations

linking the two operations. The model’s constraint is that the value returned by a read must be

consistent with the happened-before relationship.

Processor consistency: The memory is both coherent and adheres to the pipelined RAM model (see

below). The simplest way to think of processor consistency is that the memory is coherent and that all

processes agree on the ordering of any two write accesses made by the same process that is, they agree

with its program order.

Distributed Systems Page 155

UNIT-V

.

Transactions and Concurrency control: Introduction, Transactions, Nested Transactions, Locks, optimistic

concurrency control, Timestamp ordering, Comparison of methods for concurrency control.

Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic commit

protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery

Introduction

The goal of transactions is to ensure that all of the objects managed by a server remainin a consistent state

when they are accessed by multiple transactions and in the presenceof server crashes Objects that can be

recovered after their server crashes are called recoverableobjects. In general, the objects managed by a

server may be stored in volatile memory(for example, RAM) or persistent memory (for example, a hard

disk). Even if objectsare stored in volatile memory, the server may use persistent memory to store

sufficientinformation for the state of the objects to be recovered if the server process crashes. This enables

servers to make objects recoverable. A transaction is specified by a client as aset of operations on objects

tobe performed as an indivisible unit by the servers

managing those objects. The servers must guarantee that either the entire transaction is

carried out and the results recorded in permanent storage or, in the case that one or more

of them crashes, its effects are completely erased. The next chapter discusses issues

related to transactions that involve several servers, in particular how they decide on the

outcome of a distributed transaction.

Simple synchronization (without transactions)

One of the main issues of this chapter is that unless a server is carefully designed, its operations performed

on behalf of different clients may sometimes interfere with one another. Such interference may result in

incorrect values in the objects. In this section,we discuss how client operations may be synchronized without

recourse to transactions.

Atomic operations at the server •

multiple threads is beneficial to performance in many servers. We have also noted that the use of

threads allows operations from multiple clients to run concurrently and possibly access the same

objects. Therefore, the methods of objects should be designed for use in a multi-threaded context.

Distributed Systems Page 156

For example, if the methods deposit and withdraw are not designed for use in a multi-threaded

program, then it is possible that theservers managing those objects. The servers must guarantee

that either the entire transaction is carried out and the results recorded in permanent storage or, in

the case that one or more of them crashes, its effects are completely erased. The next chapter

discusses issues related to transactions that involve several servers, in particular how they decide

on the outcome of a distributed transaction.

Simple synchronization (without transactions)

One of the main issues of this chapter is that unless a server is carefully designed, its operations

performed on behalf of different clients may sometimes interfere with one another. Such

interference may result in incorrect values in the objects. In this section, we discuss how client

operations may be synchronized without recourse to transactions.

Atomic operations at the server •

multiple threads is beneficial to performance in many servers. We have also noted that

the use of threads allows operations from multiple clients to run concurrently and possibly access

the same objects. Therefore, the methods of objects should be designed for use in a multi-threaded

context. For example, if the methods deposit and withdraw are not designed for use in a multi-

threaded program, then it is possible that the actions of two or more concurrent executions of the

method could be interleaved arbitrarily and have strange effects on the instance variables of the

account objects.

Figure 16.1 Operations of the Account interface

deposit(amount)

deposit amount in the account

withdraw(amount)

withdraw amount from the account

getBalance()-> amount

return the balance of the account

setBalance(amount)

set the balance of the account to amount

Operations of the Branch interface

create(name)-> account

Distributed Systems Page 157

create a new account with a given name

lookUp(name)-> account

return a reference to the account with the given name

branchTotal()-> amount

return the total of all the balances at the branch

the synchronized keyword, which can be applied to methods in Java to ensure that only one thread at a time

can access an object. In our example, the class that implements the Account interface will be able to declare

the

methods as synchronized. For example:

public synchronized void deposit(int amount) throws RemoteException{

// adds amount to the balance of the account

}

If one thread invokes a synchronized method on an object, then that object is effectively locked, and

another thread that invokes one of its synchronized methods will be blocked until the lock is released.

Thisformof synchronization forces theserversmanaging those objects. The servers must guarantee that

either the entire transaction is carried out and the results recorded in permanent storage or, in the case that

one or more of them crashes, its effects are completely erased. The next chapter discusses issues

related to transactions that involve several servers, in particular how they decide on the outcome of a

distributed transaction.

Simple synchronization (without transactions)

One of the main issues of this chapter is that unless a server is carefully designed, its operations performed

on behalf of different clients may sometimes interfere with one another. Such interference may result in

incorrect values in the objects. In this section,we discuss how client operations may be synchronized

without recourse to transactions.

Atomic operations at the server •

multiple threads is beneficial to performance in many servers. We have also noted that

the use of threads allows operations from multiple clients to run concurrently and possibly access the same

objects. Therefore, the methods of objects should be designed for use in a multi-threaded context. For

example, if the methods deposit and withdraw are not designed for use in a multi-threaded program, then it

is possible that the actions of two or more concurrent executions of the method could be interleaved

Distributed Systems Page 158

arbitrarily and have strange effects on the instance variables of the account objects.

Figure 16.1 Operations of the Account interface

deposit(amount)

deposit amount in the account

withdraw(amount)

withdraw amount from the account

getBalance()-> amount

return the balance of the account

setBalance(amount)

set the balance of the account to amount

Operations of the Branch interface

create(name)-> account

create a new account with a given name

lookUp(name)-> account

return a reference to the account with the given name

branchTotal()-> amount

return the total of all the balances at the branch

the synchronized keyword, which can be applied to methods in Java to ensure that only one thread at a time

can access an object. In our example, the class that implements the Account interface will be able to

declare the

methods as synchronized. For example:

public synchronized void deposit(int amount) throws RemoteException{

// adds amount to the balance of the account

}

If one thread invokes a synchronized method on an object, then that object is effectively locked, and

another thread that invokes one of its synchronized methods will be blocked until the lock is released. This

form of synchronization forces the execution of threads to be separated in time and ensures that the

instance variables of a single object are accessed in a consistent manner. Without synchronization, two

separate deposit invocations might read the balance before either has incremented it – resulting in an

incorrect value. Any method that accesses an instance variable that can vary should be synchronized.

Distributed Systems Page 159

Operations that are free from interference from concurrent operations being performed in other threads are

called atomic operations. The use of synchronized methods in Java is one way of achieving atomic

operations. But in other programming environments for multi-threaded servers the operations on objects

still need to have atomic operations in order to keep their objects consistent. This may be achieved by the

use of any available mutual exclusion mechanism, such as a mutex.Enhancing client cooperation by

synchronization of server operations •

 Clients may use a server as a means of sharing some resources. This is achieved by some clients using

operations to update the server’s objects and other clients using operations to access them. The above

scheme for synchronized access to objects provides all that is required in many applications – it prevents

threads interfering with one another. However, some applications require a way for threads to

communicate with each other.

For example, a situation may arise in which the operation requested by one client cannot be completed

until an operation requested by another client has been performed. This can happen when some clients are

producers and others are consumers – the consumers may have to wait until a producer has supplied some

more of the commodity

in question. It can also occur when clients are sharing a resource – clients needing the resource may have to

wait for other clients to release it. The Java wait and notify methods allow threads to communicate with

one another in a manner that solves the above problems. They must be used within synchronized methods

of an object. A thread calls wait on an object so as to suspend itself and to allow another thread to execute

a method of that object. A

thread calls notify to inform any thread waiting on that object that it has changed some of its data. Access

to an object is still atomic when threads wait for one another: a thread that calls wait gives up its lock and

suspends itself as a single atomic action; when a thread is restarted after being notified it acquires a new

lock on the object and resumes execution from after its wait. A thread that calls notify (from within a

synchronized method) completes the execution of that method before releasing the lock on the object.

Consider the implementation of a shared Queue object with two methods: first removes and returns the

first object in the queue, and append adds a given object to the end of the queue. The method first will test

whether the queue is empty, in which case it will call wait on the queue. If a client invokes first when the

queue is empty, it will not get a reply until another client has added something to the queue – the append

operation will call notify when it has added an object to the queue. This allows one of the threads waiting

on the queue object to resume and to return the first object in the queue to its

Distributed Systems Page 160

client. When threads can synchronize their actions on an object by means of wait and notify, the server

holds onto requests that cannot immediately be satisfied and the client waits for a reply until another client

has produced whatever it needs.

Failure model for transactions Lampson [1981] proposed a fault model for distributed transactions that

accounts for

failures of disks, servers and communication. In this model, the claim is that the algorithms work correctly

in the presence of predictable faults, but no claims are made about their behaviour when a disaster occurs.

Although errors may occur, they can be detected and dealt with before any incorrect behaviour results. The

model states the

following:

• Writes to permanent storage may fail, either by writing nothing or by writing a wrong value – for

example, writing to the wrong block is a disaster. File storage may also decay. Reads from permanent

storage can detect (by a checksum) when a actions of two or more concurrent executions of the method

could be interleaved arbitrarily and have strange effects on the instance variables of the account objects.

Figure 16.1 Operations of the Account interface

deposit(amount)

deposit amount in the account

withdraw(amount)

withdraw amount from the account

getBalance()-> amount

return the balance of the account

setBalance(amount)

set the balance of the account to amount

Operations of the Branch interface

create(name)-> account

create a new account with a given name

lookUp(name)-> account

return a reference to the account with the given name

branchTotal()-> amount

return the total of all the balances at the branch

Distributed Systems Page 161

the synchronized keyword, which can be applied to methods in Java to ensure that only one thread at a time

can access an object. In our example, the class that implements the Account interface will be able to declare

the

methods as synchronized.

For example:

public synchronized void deposit(int amount) throws RemoteException{

// adds amount to the balance of the account

}

If one thread invokes a synchronized method on an object, then that object is effectively locked, and

another thread that invokes one of its synchronized methods will be blocked until the lock is released. This

form of synchronization forces the execution of threads to be separated in time and ensures that the

instance variables of a single object areaccessed in a consistent manner. Without synchronization, two

separate deposit invocations might read the balance before either has incremented it – resulting in an

incorrect value. Any method that accesses an instance variable that can vary should be synchronized.

Operations that are free from interference from concurrent operations being performed in other threads are

called atomic operations. The use of synchronized methods in Java is one way of achieving atomic

operations. But in other programming environments for multi-threaded servers the operations on objects

still need to have atomic operations in order to keep their objects consistent. This may be achieved by the

use of any available mutual exclusion mechanism, such as a mutex.Enhancing client cooperation by

synchronization of server operations.

• Clients may use a server as a means of sharing some resources. This is achieved by some clients using

operations to update the server’s objects and other clients using operations to access them. The above

scheme for synchronized access to objects provides all that is required in many applications – it prevents

threads interfering with one another. However, some applications require a way for threads to

communicate with each other.

For example, a situation may arise in which the operation requested by one client cannot be completed

until an operation requested by another client has been performed. This can happen when some clients are

producers and others are consumers – the consumers may have to wait until a producer has supplied some

more of the commodity

in question. It can also occur when clients are sharing a resource – clients needing the resource may have to

wait for other clients to release it. The Java wait and notify methods allow threads to communicate with

Distributed Systems Page 162

one another in a manner that solves the above problems. They must be used within synchronized methods

of an object. A thread calls wait on an object so as to suspend itself and to allow another thread to execute

a method of that object. A

thread calls notify to inform any thread waiting on that object that it has changed some of its data. Access

to an object is still atomic when threads wait for one another: a thread that calls wait gives up its lock and

suspends itself as a single atomic action; when a thread is restarted after being notified it acquires a new

lock on the object and resumes execution from after its wait. A thread that calls notify (from within a

synchronized method) completes the execution of that method before releasing the lock on the object.

Consider the implementation of a shared Queue object with two methods: first removes and returns the

first object in the queue, and append adds a given object to the end of the queue. The method first will test

whether the queue is empty, in which case it will call wait on the queue. If a client invokes first when the

queue is empty, it will not get a reply until another client has added something to the queue – the append

operation will call notify when it has added an object to the queue. This allows one of the threads waiting

on the queue object to resume and to return the first object in the queue to its client. When threads can

synchronize their actions on an object by means of wait and notify, the server holds onto requests that

cannot immediately be satisfied and the client waits for a reply until another client has produced whatever

it needs.

Failure model for transactions Lampson [1981] proposed a fault model for distributed transactions that

accounts for failures of disks, servers and communication. In this model, the claim is that the algorithms

work correctly in the presence of predictable faults, but no claims are made about their behaviour when a

disaster occurs. Although errors may occur, they can be detected and dealt with before any incorrect

behaviour results. The model states the

following:

• Writes to permanent storage may fail, either by writing nothing or by writing a wrong value – for example,

writing to the wrong block is a disaster. File storage may also decay. Reads from permanent storage can

detect (by a checksum) when a block of data is bad. • Servers may crash occasionally. When a crashed server

is replaced by a new process, its volatile memory is first set to a state in which it knows none of the values

(for example, of objects) from before the crash. After that it carries out a recovery procedure using

information in permanent storage and obtained from other processes to set the values of objects including

those related to the two-phase

Distributed Systems Page 163

commit protocol When a processor is faulty, it is made to crash so that it is prevented from sending

erroneous messages and from writing wrong values to permanent storage – that is, so it cannot produce

arbitrary failures.

Crashes can occur at any time; in particular, they may occur during recovery. • There may be an arbitrary

delay before a message arrives. A message may be lost, duplicated or corrupted. The recipient can detect

corrupted messages using a checksum. Both forged messages and undetected corrupt messages are regarded

as disasters.The fault model for permanent storage, processors and communications was used to design a

stable system whose components can survive any single fault and present a simple failure model. In

particular, stable storage provided an atomic write operation inthe presence of a single fault of the write

operation or a crash failure of the process. This was achieved by replicating each block on two disk blocks. A

write operation wasapplied to the pair of disk blocks, and in the case of a single fault, one good block

wasalways available. A stable processor used stable storage to enable it to recover itsobjects after a crash.

Communication errors were masked by using a reliable remoteprocedure calling mechanism.

 Transactions

In some situations, clients require a sequence of separate requests to a server to be atomic in the sense that:

1. They are free from interference by operations being performed on behalf of other concurrent clients.

2. Either all of the operations must be completed successfully or they must have no effect at all in the

presence of server crashes.

client’s banking transaction

Transaction T:

a.withdraw(100);

b.deposit(100);

c.withdraw(200);

b.deposit(200);

We return to our banking example to illustrate transactions. A client that performs a sequence of operations

on a particular bank account on behalf of a user will first lookup the account by name and then apply the

deposit, withdraw and getBalance operations directly to the relevant account. In our examples, we use

accounts with names A, B and C. The client looks them up and stores references to them in variables a, b and

c of type Account. The details of looking up the accounts by name and the declarations of the variables are

omitted from the examples.example of a simple client transaction specifying a series of related actions

Distributed Systems Page 164

involving the bank accounts A, B and C. The first two actions transfer $100 from A to B and the second two

transfer $200 from C to B. A client achieves atransfer operation by doing a withdrawal followed by a deposit.

In all of these contexts, a transaction applies to recoverable objects and is intended to be atomic. It is often

called an atomic transaction. There are two aspects to atomicity:All or nothing: A transaction either

completes successfully, in which case the effects of all of its operations are recorded in the objects, or (if it

fails or is deliberately aborted) has no effect at all. This all-or-nothing effect has two further aspects of its

own:

Failure atomicity: The effects are atomic even when the server crashes Durability: After a transaction has

completed successfully, all its effects are saved in permanent storage. We use the term ‘permanent storage’ to

refer to files held on disk or another permanent medium. Data saved in a file will survive if the server process

crashes.

Isolation: Each transaction must be performed without interference from other

transactions; in other words, the intermediate effects of a transaction must not be visible to other transactions.

The box below introduces a mnemonic, ACID, for remembering the properties of atomic transactions

To support the requirement for failure atomicity and durability, the objects must be recoverable; that is, when a

server process crashes unexpectedly due to a hardware fault or a software error, the changes due to all

completed transactions must be available in permanent storage so that when the server is replaced by a new

process, it can recover the objects to reflect the all-or-nothing effect. By the time a server acknowledges the

completion of a client’s transaction, all of the transaction’s changes to the objects must have been recorded in

permanent storage.

server that supports transactions must synchronize the operations sufficiently to ensure that the isolation

requirement is met. One way of doing this is to perform the transactions serially – one at a time, in some

arbitrary order. Unfortunately, this solution would generally be unacceptable for servers whose resources are

shared by multiple interactive users. For instance, in our banking example it is desirable to allow several bank

clerks to perform online banking transactions at the same time as one another.

The aim for any server that supports transactions is to maximize concurrency. Therefore transactions are

allowed to execute concurrently if this would have the same effect as a serial execution – that is, if they are

serially equivalent or serializable.

 Operations in the Coordinator interface

openTransaction() o trans;

Starts a new transaction and delivers a unique TID trans. This identifier will be used in the

Distributed Systems Page 165

other operations in the transaction.

closeTransaction(trans)o (commit, abort);

Ends a transaction: a commit return value indicates that the transaction has committed;

an abort return value indicates that it has aborted.

 abortTransaction(trans);

Aborts the transaction.

Transaction capabilities can be added to servers of recoverable objects. Each transaction is created and

managed by a coordinator, which implements the Coordinator interface shown in Figure 16.3. The

coordinator gives each transaction an identifier, or TID. The client invokes the openTransaction method of

the coordinator to introduce a new transaction – a transaction identifier or TID is allocated and returned. At

the end of a transaction, the client invokes the closeTransaction method to indicate its end – all of the

recoverable objects accessed by the transaction should be saved. If, for some reason, the client wants to abort

a transaction, it invokes the abortTransaction method – all of its effects should be removed from sight.

transaction is achieved by cooperation between a client program, some recoverable objects and a coordinator.

The client specifies the sequence of invocations on recoverable objects that are to comprise a transaction. To

achieve this, the client sends with each invocation the transaction identifier returned by openTransaction.

One way to make this possible is to include an extra argument in each operation of a recoverable object to

carry the TID. For example, in the banking service the deposit operation might be defined:

deposit(trans, amount)

Deposits amount in the account for transaction with TID trans

When transactions are provided as middleware, the TID can be passed implicitly with all remote invocations

between openTransaction and closeTransaction or abortTransaction. This is what the CORBA Transaction

Service does. We shall not show TIDs in our examples.

Normally, a transaction completes when the client makes a closeTransaction request. If the transaction has

progressed normally, the reply states that the transaction is committed – this constitutes a promise to the

client that all of the changes requested in the transaction are permanently recorded and that any future

transactions that access the same data will see the results of all of the changes made during the transaction.

Alternatively, the transaction may have to abort for one of several reasons related to the nature of the

transaction itself, to conflicts with another transaction or to the crashing of a process or computer. When a

Distributed Systems Page 166

transaction is aborted the parties involved (the recoverable objects and the coordinator) must ensure that none

of its effects are visible to future transactions, either in the objects or in their copies in permanent storage.

Figure 16.4 Transaction life
histories

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

• • server aborts •

• • transaction o •

operation operation
operation ERROR

 reported to client

closeTransaction

abortTransactio

n

shows these three alternative life histories for transactions. We refer to a transaction as failing in both of the

latter cases.

Service actions related to process crashes • If a server process crashes unexpectedly, it is eventually

replaced. The new server process aborts any uncommitted transactions and uses a recovery procedure to

restore the values of the objects to the values produced by the most recently committed transaction. To deal

with a client that crashes unexpectedly during a transaction, servers can give each transaction an expiry time

and abort any transaction that has not completed before its expiry time.

Client actions related to server process crashes • If a server crashes while a transaction is in progress, the

client will become aware of this when one of the operations returns an exception after a timeout. If a server

crashes and is then replaced during the progress of transaction, the transaction will no longer be valid and the

client must be informed via an exception to the next operation. In either case, the client must then formulate a

plan, possibly in consultation with the human user, for the completion or abandonment of the task of which

the transaction was a part.

Concurrency control

Distributed Systems Page 167

This section illustrates two well-known problems of concurrent transactions in the context of the banking

example – the ‘lost update’ problem and the ‘inconsistent retrievals’ problem. We then show how both of

these problems can be avoided by using serially equivalent executions of transactions. We assume throughout

that each of the operations deposit, withdraw, getBalance and setBalance is a synchronized operation – that

is, that its effects on the instance variable that records the balance of an account are atomic.

The lost update problem • The lost update problem is illustrated by the following pair of transactions on

bank accounts A, B and C, whose initial balances are $100, $200 and $300, respectively. Transaction T

transfers an amount from account A to account B. Transaction U transfers an amount from account C to

account B. In both cases, the amount transferred is calculated to increase the balance of B by 10%. The net

effects on account B of executing the transactions T and U should be to increase the balance of account B by

10% twice, so its final value is $242.

Now consider the effects of allowing the transactions T and U to run concurrently, as in Figure 16.5. Both

transactions get the balance of B as $200 and then deposit $20. The result is incorrect, increasing the balance

of account B by $20 instead of $42. This is an illustration of the ‘lost update’ problem. U’s update is lost

because T overwrites it without seeing it. Both transactions have read the old value before either writes the

new value.

In Figure onwards, we show the operations that affect the balance of an account on successive lines down the

page, and the reader should assume that an operation on a particular line is executed at a later time than the

one on the line above it.

Transaction T: Transaction U:

balance = b.getBalance(); balance = b.getBalance();
b.setBalance(balance*1.1

);

b.setBalance(balance*1.1

);

a.withdraw(balance/10) c.withdraw(balance/10)

balance = b.getBalance(); $200

 balance = b.getBalance(); $200

b.setBalance(balance*1.1

); $220

b.setBalance(balance*1.1

); $220

a.withdraw(balance/10) $80

 c.withdraw(balance/10) $280

amount transferred is calculated to increase the balance of B by 10%. The net effects on account B of

executing the transactions T and U should be to increase the balance of account B by 10% twice, so its final

Distributed Systems Page 168

value is $242.

Now consider the effects of allowing the transactions T and U to run concurrently, as in Figure 16.5. Both

transactions get the balance of B as $200 and then deposit $20. The result is incorrect, increasing the balance

of account B by $20 instead of $42. This is an illustration of the ‘lost update’ problem. U’s update is lost

because T overwrites it without seeing it. Both transactions have read the old value before either writes the

new value.

In Figure 16.5 onwards, we show the operations that affect the balance of an account on successive lines

down the page, and the reader should assume that an operation on a particular line is executed at a later time

than the one on the line above it.

Inconsistent retrievals • Figure 16.6 shows another example related to a bank account in which transaction

V transfers a sum from account A to B and transaction W invokes the branchTotal method to obtain the sum

of the balances of all the accounts in the bank.

The inconsistent retrievals problem

Transaction V: Transaction W:

a.withdraw(100)

aBranch.branchTotal()

b.deposit(100)

a.withdraw(100); $100

 total = a.getBalance() $100

total = total +

b.getBalance() $300

total = total +

c.getBalance()

b.deposit(100) $300 •

 •

 A serially equivalent interleaving of T and U

 Transaction T: Transaction U:

balance = b.getBalance() balance = b.getBalance()

b.setBalance(balance*1.1

) b.setBalance(balance*1.1)

 a.withdraw(balance/10) c.withdraw(balance/10)

 balance = b.getBalance() $200

b.setBalance(balance*1.1

) $220

 balance = b.getBalance() $220

 b.setBalance(balance*1.1) $242

 a.withdraw(balance/10) $80

 c.withdraw(balance/10) $278

Distributed Systems Page 169

The balances of the two bank accounts, A and B, are both initially $200. The result of branchTotal includes

the sum of A and B as $300, which is wrong. This is an illustration of the ‘inconsistent retrievals’ problem.

W’s retrievals are inconsistent because V has performed only the withdrawal part of a transfer at the time the

sum is calculated.

Serial equivalence • If each of several transactions is known to have the correct effect when it is done on its

own, then we can infer that if these transactions are done one at a time in some order the combined effect will

also be correct. An interleaving of the operations of transactions in which the combined effect is the same as

if the transactions had been performed one at a time in some order is a serially equivalent interleaving. When

we say that two different transactions have the same effect as one another, we mean that the read operations

return the same values and that the instance variables of the objects have the same values at the end.

The use of serial equivalence as a criterion for correct concurrent execution prevents the occurrence of lost

updates and inconsistent retrievals.

The lost update problem occurs when two transactions read the old value of a variable and then use it to

calculate the new value. This cannot happen if one transaction is performed before the other, because the

later transaction will read the value written by the earlier one. As a serially equivalent interleaving of two

transactions produces the same effect as a serial one, we can solve the lost update problem by means of serial

equivalence. Figure 16.7 shows one such interleaving in which the operations that affect the shared account,

B, are actually serial, for transaction T does all its operations on B before transaction U does. Another

interleaving of T and U that has this property is one in which transaction U completes its operations on

account B before transaction T starts.

We now consider the effect of serial equivalence in relation to the inconsistent retrievals problem, in which

transaction V is transferring a sum from account A to B and transaction W is obtaining the sum of all the

balances (see Figure 16.6). The inconsistent retrievals problem can occur when a retrieval transaction runs

concurrently with an update transaction. It cannot occur if the retrieval transaction is performed before or

after the update transaction. A serially equivalent interleaving of a retrieval transaction and an update

transaction, for example as in Figure 16.8, will prevent inconsistent retrievals occurring.

A serially equivalent interleaving of V and W

Transaction V: Transaction W:

a.withdraw(100); aBranch.branchTotal()

b.deposit(100)

Distributed Systems Page 170

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total +

b.getBalance() $400

total = total +

c.getBalance()

...

Conflicting operations • When we say that a pair of operations conflicts we mean that their combined

effect depends on the order in which they are executed. To simplify matters we consider a pair of

operations, read and write. read accesses the value of an object and write changes its value. The effect of

an operation refers to the value of an object set by a write operation and the result returned by a read

operation. The conflict rules for read and write operations are given in Figure 16.9.

For any pair of transactions, it is possible to determine the order of pairs of conflicting operations on

objects accessed by both of them. Serial equivalence can be defined in terms of operation conflicts as

follows:

For two transactions to be serially equivalent, it is necessary and sufficient that all pairs of conflicting

operations of the two transactions be executed in the same order at all of the objects they both access.

Figure
16.9 Read and write operation conflict rules

Operations of

different

Confli

ct Reason

 transactions

read read No

Because the effect of a pair of read

operations does
 not depend on the order in which they are

executed

read write Yes

Because the effect of a read and a write

operation

depends on the order of their execution

write write Yes

Because the effect of a pair of write

operations

depends on the order of their execution

Figure 16.10 A non–serially-equivalent interleaving of operations of transactions T and U

Transaction T: Transaction U:

x = read(i)

Distributed Systems Page 171

write(i, 10)
y = read(j)
write(j, 30)
write(j, 20)
z = read (i)

Consider as an example the transactions T and U, defined as follows:

T: x = read(i); write(i, 10); write(j, 20);

U: y = read(j); write(j, 30); z = read (i);

Then consider the interleaving of their executions, shown in Figure 16.10. Note that each transaction’s

access to objects i and j is serialized with respect to one another, because T makes all of its accesses to i

before U does and U makes all of its accesses to j before T does. But the ordering is not serially

equivalent, because the pairs of conflicting operations are not done in the same order at both objects.

Serially equivalent orderings require one of the following two conditions:

 T accesses i before U and T accesses j before U.

 accesses i before T and U accesses j before T.

Serial equivalence is used as a criterion for the derivation of concurrency control protocols. These

protocols attempt to serialize transactions in their access to objects. Three alternative approaches to

concurrency control are commonly used: locking, optimistic concurrency control and timestamp ordering.

However, most practical systems use locking, which is discussed in Section 16.4. When locking is used,

the server sets a lock, labelled with the transaction identifier, on each object just before it is accessed and

removes these locks when the transaction has completed. While an object is locked, only the transaction

that it is locked for can access that object; other transactions must either wait until the object is unlocked

or, in some cases, share the lock. The use of locks can lead to deadlocks, with transactions waiting for

each other to release locks – for example, when a pair of transactions each has an object locked that the

other needs to access. We discuss the deadlock problem and some remedies for it in Section 16.4.1.

Optimistic concurrency control is described in Section 16.5. In optimistic schemes, a transaction proceeds

until it asks to commit, and before it is allowed to commit the server performs a check to discover whether

it has performed operations on any objects that conflict with the operations of other concurrent

transactions, in which case the server aborts it and the client may restart it. The aim of the check is to

ensure that all the objects are correct.

Distributed Systems Page 172

Timestamp ordering is described in Section 16.6. In timestamp ordering, a server records the most recent

time of reading and writing of each object and for each

Figure 16.11 A dirty read when transaction T aborts

Transaction T: Transaction U:

a.getBalance() a.getBalance()
a.setBalance(balance +

10)

a.setBalance(balance +

20)

balance = a.getBalance() $100

a.setBalance(balance +

10) $110

 balance = a.getBalance() $110

a.setBalance(balance +

20) $130

 commit transaction

abort transaction

operation, the timestamp of the transaction is compared with that of the object to determine whether it can be

done immediately or must be delayed or rejected. When an operation is delayed, the transaction waits; when

it is rejected, the transaction is aborted.

Basically, concurrency control can be achieved either by clients’ transactions waiting for one another or by

restarting transactions after conflicts between operations have been detected, or by a combination of the two.

Recoverability from aborts

Servers must record all the effects of committed transactions and none of the effects of aborted

transactions.They must therefore allow for the fact that a transaction may abort by preventing it affecting

other concurrent transactions if it does so.

This section illustrates two problems associated with aborting transactions in the context of the banking

example. These problems are called ‘dirty reads’ and ‘premature writes’, and both of them can occur in the

presence of serially equivalent executions of transactions. These issues are concerned with the effects of

operations on objects such as the balance of a bank account. To simplify things, operations are considered in

two categories: read operations and write operations. In our illustrations, getBalance is a read operation and

setBalance a write operation.

Dirty reads •

 The isolation property of transactions requires that transactions do not see the uncommitted state of

other transactions. The ‘dirty read’ problem is caused by the interaction between a read operation in

one transaction and an earlier write operation in another transaction on the same object. Consider the

Distributed Systems Page 173

executions illustrated in Figure 16.11, in which T gets the balance of account A and sets it to $10 more,

then U gets the balance of account A and sets it to $20 more, and the two executions are serially

equivalent. Now suppose that the transaction T aborts after U has committed. Then the transaction U

will have seen a value that never existed, since A will be restored to its original value. We say that the

transaction U has performed a dirty read. As it has committed, it cannot be undone.

Figure 16.12 Overwriting uncommitted
values

 Transaction T: Transaction U:

a.setBalance(105) a.setBalance(110)

 $100

 a.setBalance(105) $105

 a.setBalance(110)

Recoverability of

transactions •

If a transaction (like U) has committed after it

has seen

the effects of a transaction that subsequently aborted, the situation is not recoverable. To ensure that such

situations will not arise, any transaction (like U) that is in danger of having a dirty read delays its commit

operation. The strategy for recoverability is to delay commits until after the commitment of any other

transaction whose uncommitted state has been observed. In our example, U delays its commit until after T

commits. In the case that T aborts, then U must abort as well.

Cascading aborts • In Figure 16.11, suppose that transaction U delays committing until after T aborts. As we

have said, U must abort as well. Unfortunately, if any other transactions have seen the effects due to U, they

too must be aborted. The aborting of these latter transactions may cause still further transactions to be

aborted. Such situations are called cascading aborts. To avoid cascading aborts, transactions are only

allowed to read objects that were written by committed transactions. To ensure that this is the case, any read

operation must be delayed until other transactions that applied a write operation to the same object have

committed or aborted. The avoidance of cascading aborts is a stronger condition than recoverability.

Premature writes • Consider another implication of the possibility that a transaction may abort. This one is

related to the interaction between write operations on the same object belonging to different transactions. For

an illustration, we consider two setBalance transactions, T and U, on account A, as shown in Figure 16.12.

Before the transactions, the balance of account A was $100. The two executions are serially equivalent, with

T setting the balance to $105 and U setting it to $110. If the transaction U aborts and T commits, the balance

should be $105.

Distributed Systems Page 174

Some database systems implement the action of abort by restoring ‘before images’ of all the writes of a

transaction. In our example, A is $100 initially, which is the ‘before image’ of T’s write; similarly, $105 is

the ‘before image’ of U’s write. Thus if U aborts, we get the correct balance of $105.

Now consider the case when U commits and then T aborts. The balance should be $110, but as the ‘before

image’ of T’s write is $100, we get the wrong balance of $100. Similarly, if T aborts and then U aborts, the

‘before image’ of U’s write is $105 and we get the wrong balance of $105 – the balance should revert to

$100.

To ensure correct results in a recovery scheme that uses before images, write operations must be delayed

until earlier transactions that updated the same objects have either committed or aborted.

Strict executions of transactions • Generally, it is required that transactions delay both their read and write

operations so as to avoid both dirty reads and premature writes. The executions of transactions are called

strict if the service delays both read and write operations on an object until all transactions that previously

wrote that object have either committed or aborted. The strict execution of transactions enforces the desired

property of isolation.

Tentative versions • For a server of recoverable objects to participate in transactions, it must be designed so

that any updates of objects can be removed if and when a transaction aborts. To make this possible, all of the

update operations performed during a transaction are done in tentative versions of objects in volatile

memory. Each transaction is provided with its own private set of tentative versions of any objects that it has

altered. All the update operations of a transaction store values in the transaction’s own private set. Access

operations in a transaction take values from the transaction’s own private set if possible, or failing that, from

the objects.The tentative versions are transferred to the objects only when a transaction commits, by which

time they will also have been recorded in permanent storage. This is performed in a single step, during which other

transactions are excluded from access to the objects that are being altered. When a transaction aborts, its tentative

versions are deleted.

Nested transactions

Nested transactions extend the above transaction model by allowing transactions to be composed of other

transactions. Thus several transactions may be started from within a transaction, allowing transactions to be

regarded as modules that can be composed as required.

The outermost transaction in a set of nested transactions is called the top-level transaction. Transactions other

than the top-level transaction are called subtransactions. For example, in Figure 16.13, T is a top-level

Distributed Systems Page 175

transaction that starts a pair of subtransactions, T1 and T2. The subtransaction T1 starts its own pair of

subtransactions, T11 and T22. Also, subtransaction T2 starts its own subtransaction, T21, which starts another

subtransaction, T211.

A subtransaction appears atomic to its parent with respect to transaction failures and to concurrent access.

Subtransactions at the same level, such as T1 and T2, can run concurrently, but their access to common

objects is serialized – for example, by the locking scheme described in Section 16.4. Each subtransaction can

fail independently of its parent and of the other subtransactions. When a subtransaction aborts, the parent

transaction can sometimes choose an alternative subtransaction to complete its task. For example, a

transaction to deliver a mail message to a list of recipients could be structured as a set of subtransactions,

each of which delivers the message to one of the recipients. If one or more of the subtransactions fails, the

parent transaction could record the fact and then commit, with the result that all the successful child

transactions commit. It could then start another transaction to attempt to redeliver the messages that were not

sent the first time.

\

Figure 16.13 Nested transactions

 : top-level transaction

 T1 = openSubTransaction T2 = openSubTransaction

T1 :

 commit

 T2 :

 openSubTransaction openSubTransaction openSubTransaction

T11 :

 provisional commit abort

T12 : T21 :

 openSubTransaction
 provisional commit provisional commit provisional commit

T

211
:

provisional commit

When we need to distinguish our original form of transaction from nested ones, we use the term flat

transaction. It is flat because all of its work is done at the same level between an openTransaction and a

commit or abort, and it is not possible to commit or abort parts of it. Nested transactions have the following

main advantages:

Subtransactions at one level (and their descendants) may run concurrently with other subtransactions at the

same level in the hierarchy. This can allow additional concurrency in a transaction. When subtransactions run

in different servers, they can work in parallel. For example, consider the branchTotal operation in our

banking example. It can be implemented by invoking getBalance at every account in the branch. Now each

of these invocations may be performed as a subtransaction, in which case they can be performed

Distributed Systems Page 176

concurrently. Since each one applies to a different account, there will be no conflicting operations among the

subtransactions.

Subtransactions can commit or abort independently. In comparison with a single transaction, a set of nested

subtransactions is potentially more robust. The above example of delivering mail shows that this is so – with

a flat transaction, one transaction failure would cause the whole transaction to be restarted. In fact, a parent

can decide on different actions according to whether a subtransaction has aborted or not.

The rules for committing of nested transactions are rather subtle:

A transaction may commit or abort only after its child transactions have completed.

When a subtransaction completes, it makes an independent decision either to commit provisionally or to

abort. Its decision to abort is final.

When a parent aborts, all of its subtransactions are aborted. For example, if T2 aborts then T21 and T211 must

also abort, even though they may have provisionally committed.

When a subtransaction aborts, the parent can decide whether to abort or not. In our example, T decides to

commit although T2 has aborted.

If the top-level transaction commits, then all of the subtransactions that have provisionally committed can

commit too, provided that none of their ancestors has aborted. In our example, T’s commitment allows T1, T11

and T12 to commit, but not T21 and T211 since their parent, T2, aborted. Note that the effects of a

subtransaction are not permanent until the top-level transaction commits.

In some cases, the top-level transaction may decide to abort because one or more of its subtransactions have

aborted. As an example, consider the following Transfer transaction:

Transfer $100 from B to A

a.deposit(100)

b.withdraw(100)

This can be structured as a pair of subtransactions, one for the withdraw operation and the other for deposit.

When the two subtransactions both commit, the Transfer transaction can also commit. Suppose that a

withdraw subtransaction aborts whenever an account is overdrawn. Now consider the case when the

withdraw subtransaction aborts and the deposit subtransaction commits – and recall that the commitment of a

child transaction is conditional on the parent transaction committing. We presume that the top-level

(Transfer) transaction will decide to abort. The aborting of the parent transaction causes the subtransactions

to abort – so the deposit transaction is aborted and all its effects are undone.

Locks

Distributed Systems Page 177

Transactions must be scheduled so that their effect on shared data is serially equivalent. A server can achieve

serial equivalence of transactions by serializing access to the objects. Figure 16.7 shows an example of how

serial equivalence can be achieved with some degree of concurrency – transactions T and U both access

account B, but T completes its access before U starts accessing it.

simple example of a serializing mechanism is the use of exclusive locks. In this locking scheme, the server

attempts to lock any object that is about to be used by any operation of a client’s transaction. If a client

requests access to an object that is already locked due to another client’s transaction, the request is suspended

and the client must wait until the object is unlocked.

Figure 16.14 illustrates the use of exclusive locks. It shows the same transactions as Figure 16.7, but with an

extra column for each transaction showing the locking, waiting and unlocking. In this example, it is assumed

that when transactions T and U start, the balances of the accounts A, B and C are not yet locked. When

transaction T is about to use account B, it is locked for T. When transaction U is about to use B it is still

Figure 16.14 Transactions T and U with exclusive
locks

 Transaction T: Transaction U:

balance =

b.getBalance()
balance =

b.getBalance()

 b.setBalance(bal*1.1) b.setBalance(bal*1.1)

 a.withdraw(bal/10) c.withdraw(bal/10)

Operations Locks Operations

Locks

 openTransaction

 bal = b.getBalance() lock B

 b.setBalance(bal*1.1) openTransaction

 a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s

 lock on B

 closeTransaction unlock A, B • • •

 lock B

 b.setBalance(bal*1.1)

 c.withdraw(bal/10) lock C

 closeTransaction unlock B, C

Distributed Systems Page 178

Figure 16.14 Transactions T and U with exclusive
locks

 Transaction T: Transaction U:

balance =

b.getBalance()
balance =

b.getBalance()

 b.setBalance(bal*1.1) b.setBalance(bal*1.1)

 a.withdraw(bal/10) c.withdraw(bal/10)

Operations Locks Operations

Locks

 openTransaction

 bal = b.getBalance() lock B

 b.setBalance(bal*1.1) openTransaction

 a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s

 lock on B

 closeTransaction unlock A, B • • •

 lock B

 b.setBalance(bal*1.1)

 c.withdraw(bal/10) lock C

 closeTransaction unlock B, C

locked for T, so transaction U waits. When transaction T is committed, B is unlocked, whereupon transaction

U is resumed. The use of the lock on B effectively serializes the access to B. Note that if, for example, T

released the lock on B between its getBalance and setBalance operations, transaction U’s getBalance

operation on B could be interleaved between them.

Serial equivalence requires that all of a transaction’s accesses to a particular object be serialized with respect

to accesses by other transactions. All pairs of conflicting operations of two transactions should be executed in

the same order. To ensure this, a transaction is not allowed any new locks after it has released a lock. The

first phase of each transaction is a ‘growing phase’, during which new locks are acquired. In the second

phase, the locks are released (a ‘shrinking phase’). This is called two-phase locking.

We saw that because transactions may abort, strict executions are needed to prevent dirty reads and

premature writes. Under a strict execution regime, a transaction that needs to read or write an object must be

delayed until other transactions that wrote the same object have committed or aborted. To enforce this rule,

any locks applied during the progress of a transaction are held until the transaction commits or aborts. This is

called strict two-phase locking. The presence of the locks prevents other transactions reading or writing the

objects. When a transaction commits, to ensure recoverability, the locks must be held until all the objects it

updated have been written to permanent storageserver generally contains a large number of objects, and a

typical transaction accesses only a few of them and is unlikely to clash with other current transactions. The

Distributed Systems Page 179

granularity with which concurrency control can be applied to objects is an important issue, since the scope

for concurrent access to objects in a server will be limited severely if concurrency control (for example,

locks) can only be applied to all the objects at once. In our banking example, if locks were applied to all

customer accounts at a branch, only one bank clerk could perform an online banking transaction at any time –

hardly an acceptable constraint!

The portion of the objects to which access must be serialized should be as small as possible; that is, just that

part involved in each operation requested by transactions. In our banking example, a branch holds a set of

accounts, each of which has a balance. Each banking operation affects one or more account balances –

deposit and withdraw affect one account balance, and branchTotal affects all of them.

The description of concurrency control schemes given below does not assume any particular granularity. We

discuss concurrency control protocols that are applicable to objects whose operations can be modelled in

terms of read and write operations on the objects. For the protocols to work correctly, it is essential that each

read and write operation is atomic in its effects on objects.

Concurrency control protocols are designed to cope with conflicts between operations in different

transactions on the same object. In this chapter, we use the notion of conflict between operations to explain

the protocols. The conflict rules for read and write operations are given in Figure 16.9, which shows that

pairs of read operations from different transactions on the same object do not conflict. Therefore, a simple

exclusive lock that is used for both read and write operations reduces concurrency more than is necessary.

It is preferable to adopt a locking scheme that controls the access to each object so that there can be several

concurrent transactions reading an object, or a single transaction writing an object, but not both. This is

commonly referred to as a ‘many readers/single writer’ scheme. Two types of locks are used: read locks and

write locks. Before a transaction’s read operation is performed, a read lock should be set on the object.

Before a transaction’s write operation is performed, a write lock should be set on the object. Whenever it is

impossible to set a lock immediately, the transaction (and the client) must wait until it is possible to do so – a

client’s request is never rejected.

As pairs of read operations from different transactions do not conflict, an attempt to set a read lock on an

object with a read lock is always successful. All the transactions reading the same object share its read lock –

for this reason, read locks are sometimes called shared locks.

The operation conflict rules tell us that:

If a transaction T has already performed a read operation on a particular object, then a concurrent transaction

U must not write that object until T commits or aborts.

Distributed Systems Page 180

If a transaction T has already performed a write operation on a particular object, then a concurrent transaction

U must not read or write that object until T commits or aborts.

To enforce condition 1, a request for a write lock on an object is delayed by the presence of a read lock

belonging to another transaction. To enforce condition 2, a request for either a read lock or a write lock on

an object is delayed by the presence of a write lock belonging to another transaction.

Figure
16.15

Lock
compatibility

 For one object Lock requested

read

write

 Lock already set none OK OK

 read OK wait

 write wait wait

Figure 16.15 shows the compatibility of read locks and write locks on any particular object. The entries to the left of

the first column in the table show the type of lock already set, if any. The entries above the first row show the type of

lock requested. The entry in each cell shows the effect on a transaction that requests the type of lock given above when

the object has been locked in another transaction with the type of lock on the left.

Inconsistent retrievals and lost updates are caused by conflicts between read operations in one transaction and write

operations in another without the protection of a concurrency control scheme such as locking. Inconsistent retrievals

are prevented by performing the retrieval transaction before or after the update transaction. If the retrieval transaction

comes first, its read locks delay the update transaction. If it comes second, its request for read locks causes it to be

delayed until the update transaction has completed.

Lost updates occur when two transactions read a value of an object and then use it to calculate a new value. Lost

updates are prevented by making later transactions delay their reads until the earlier ones have completed. This is

achieved by each transaction setting a read lock when it reads an object and then promoting it to a write lock when it

writes the same object – when a subsequent transaction requires a read lock it will be delayed until any current

transaction has completed.

A transaction with a read lock that is shared with other transactions cannot promote its read lock to a write

lock, because the latter would conflict with the read locks held by the other transactions. Therefore, such a

transaction must request a write lock and wait for the other read locks to be released.

Lock promotion refers to the conversion of a lock to a stronger lock – that is, a lock that is more exclusive.

The lock compatibility table in Figure 16.15 shows the relative exclusivity of locks. The read lock allows

other read locks, whereas the write lock does not. Neither allows other write locks. Therefore, a write lock is

Distributed Systems Page 181

more exclusive than a read lock. Locks may be promoted because the result is a more exclusive lock. It is not

safe to demote a lock held by a transaction before it commits, because the result will be more permissive than

the previous one and may allow executions by other transactions that are inconsistent with serial equivalence.

The rules for the use of locks in a strict two-phase locking implementation are summarized in Figure 16.16.

To ensure that these rules are adhered to, the client has no access to operations for locking or unlocking items

of data. Locking is performed when the requests for read and write operations are about to be applied to the

recoverable objects, and unlocking is performed by the commit or abort operations of the transaction

coordinator.

For example, the CORBA Concurrency Control Service [OMG 2000b] can be used to apply concurrency

control on behalf of transactions or to protect objects without using transactions. It provides a means of

associating a collection of locks (called a lockset) with a resource such as a recoverable object. A lockset

allows locks to be acquired or released. A lockset’s lock method will acquire a lock or block until the lock is

free; other methods allow locks to be promoted or released. Transactional locksets support the same methods

as locksets, but their methods require transaction identifiers as arguments. We mentioned earlier that the

CORBA transaction service tags all client requests in a transaction with the transaction identifier. This

enables a suitable lock to be acquired before each of the recoverable objects is accessed during a transaction.

The transaction coordinator is responsible for releasing the locks when a transaction commits or aborts.

The rules given in Figure 16.16 ensure strictness, because the locks are held until a transaction has either

committed or aborted. However, it is not necessary to hold read locks to ensure strictness. Read locks need

only be held until the request to commit or abort arrives.

Lock implementation • The granting of locks will be implemented by a separate object in the server that we

call the lock manager. The lock manager holds a set of locks, for example in a hash table. Each lock is an

instance of the class Lock and is associated with a particular object. The class Lock is shown in Figure 16.17.

Each instance of Lock maintains the following information in its instance variables:the identifier of the

locked object;

the transaction identifiers of the transactions that currently hold the lock (shared locks can have several

holders);

a lock type.

Figure 16.17 Lock class

public class Lock {
private Object object; // the object being protected by the lock
private Vector holders; // the TIDs of current holders private LockType

Distributed Systems Page 182

lockType; // the current type

public synchronized void acquire(TransID trans, LockType aLockType){ while(/*another transaction holds

the lock in conflicting mode*/) {

try {
wait();

}catch (InterruptedException e){/*...*/ }
}
if (holders.isEmpty()) { // no TIDs hold lock

holders.addElement(trans);
lockType = aLockType;

} else if (/*another transaction holds the lock, share it*/)){
if (/* this transaction not a holder*/) holders.addElement(trans);

} else if (/* this transaction is a holder but needs a more exclusive lock*/)

lockType.promote();
}

}

public synchronized void release(TransID trans){

holders.removeElement(trans); // remove this holder
 set locktype to none notifyAll();

}
}

The methods of Lock are synchronized so that the threads attempting to acquire or release a lock will not

interfere with one another. But, in addition, attempts to acquire the lock use the wait method whenever they

have to wait for another thread to release it.

The acquire method carries out the rules given in Figure 16.15 and Figure 16.16. Its arguments specify a

transaction identifier and the type of lock required by that transaction. It tests whether the request can be

granted. If another transaction holds the lock in a conflicting mode, it invokes wait, which causes the caller’s

thread to be suspended until a corresponding notify. Note that the wait is enclosed in a while, because all

waiters are notified and some of them may not be able to proceed. When, eventually, the condition is

satisfied, the remainder of the method sets the lock appropriately:

if no other transaction holds the lock, just add the given transaction to the holders and set the type;

else if another transaction holds the lock, share it by adding the given transaction to the holders (unless it is

already a holder);

else if this transaction is a holder but is requesting a more exclusive lock, promote the lock.

Figure 16.18 LockManager class

public class LockManager {

Distributed Systems Page 183

private Hashtable theLocks;

public void setLock(Object object, TransID trans, LockType lockType){ Lock foundLock;
synchronized(this){

 find the lock associated with object
 if there isn’t one, create it and add it to the hashtable

}
foundLock.acquire(trans, lockType);

}

 synchronize this one because we want to remove all entries public synchronized

void unLock(TransID trans) {
Enumeration e = theLocks.elements(); while(e.hasMoreElements()){

Lock aLock = (Lock)(e.nextElement());
if(/* trans is a holder of this lock*/) aLock.release(trans);

}
}

}

The release method’s arguments specify the transaction identifier of the transaction that is releasing the lock.

It removes the transaction identifier from the holders, sets the lock type to none and calls notifyAll. The

method notifies all waiting threads in case there are multiple transactions waiting to acquire read locks – all

of them may be able to proceed.

The class LockManager is shown in Figure 16.18. All requests to set locks and to release them on behalf of

transactions are sent to an instance of LockManager:

The setLock method’s arguments specify the object that the given transaction wants to lock and the type of

lock. It finds a lock for that object in its hashtable or, if necessary, creates one. It then invokes the acquire

method of that lock.

The unLock method’s argument specifies the transaction that is releasing its locks. It finds all of the locks in

the hashtable that have the given transaction as a holder. For each one, it calls the release method.

The reader is invited to consider the following:

What is the consequence for write transactions in the presence of a steady trickle of requests for read locks?

Think of an alternative implementation.

When the holder has a write lock, several readers and writers may be waiting. The reader should consider the

effect of notifyAll and think of an alternative implementation. If a holder of a read lock tries to promote the

lock when the lock is shared, it will be blocked. Is there any solution to this difficulty?

Locking rules for nested transactions • The aim of a locking scheme for nested transactions is to serialize

access to objects so that:

Distributed Systems Page 184

Each set of nested transactions is a single entity that must be prevented from observing the partial effects of

any other set of nested transactions.

Each transaction within a set of nested transactions must be prevented from observing the partial effects of

the other transactions in the set.

The first rule is enforced by arranging that every lock that is acquired by a successful subtransaction is

inherited by its parent when it completes. Inherited locks are also inherited by ancestors. Note that this form

of inheritance passes from child to parent! The top-level transaction eventually inherits all of the locks that

were acquired by successful subtransactions at any depth in a nested transaction. This ensures that the locks

can be held until the top-level transaction has committed or aborted, which prevents members of different

sets of nested transactions observing one another’s partial effects.

The second rule is enforced as follows:

Parent transactions are not allowed to run concurrently with their child transactions. If a parent transaction

has a lock on an object, it retains the lock during the time that its child transaction is executing. This means

that the child transaction temporarily acquires the lock from its parent for its duration.

Subtransactions at the same level are allowed to run concurrently, so when they access the same objects, the

locking scheme must serialize their access.

The following rules describe lock acquisition and release

For a subtransaction to acquire a read lock on an object, no other active transaction can have a write lock on

that object, and the only retainers of a write lock are its ancestors.

For a subtransaction to acquire a write lock on an object, no other active transaction can have a read or write

lock on that object, and the only retainers of read and write locks on that object are its ancestors.

When a subtransaction commits, its locks are inherited by its parent, allowing the parent to retain the locks in

the same mode as the child.

When a subtransaction aborts, its locks are discarded. If the parent already retains the locks, it can continue to

do so.Note that subtransactions at the same level that access the same object will take turns to acquire the

locks retained by their parent. This ensures that their access to a common object is serialized.

As an example, suppose that subtransactions T1, T2 and T11 in Figure 16.13 all access a common object,

which is not accessed by the top-level transaction T. Suppose that subtransaction T1 is the first to access the

object and successfully acquires a lock,

Figure 16.19 Deadlock with write locks

Transaction T Transaction U

Distributed Systems Page 185

Operations Locks Operations Locks
a.deposit(100); write lock A

 b.deposit(200) write lock B

b.withdraw(100)

••• waits for U’s a.withdraw(200); waits for T’s

 lock on B ••• lock on A

••• •••

••• •••

which it passes on to T11 for the duration of its execution, getting it back when T11 completes. When T1

completes its execution, the top-level transaction T inherits the lock, which it retains until the set of nested

transactions completes. The subtransaction T2 can acquire the lock from T for the duration of its execution.

Definition of deadlock • Deadlock is a state in which each member of a group of transactions is waiting for

some other member to release a lock. A wait-for graph can be used to represent the waiting relationships

between current transactions. In a wait-for graph the nodes represent transactions and the edges represent

wait-for relationships between transactions – there is an edge from node T to node U when transaction T is

waiting for transaction U to release a lock.. Recall that the deadlock arose because transactions T and U both

attempted to acquire an object held by the other. Therefore T waits for U and U waits for T. The dependency

between transactions is indirect, via a dependency on objects. The diagram on the right shows the objects

held by and waited for by transactions T and U. As each transaction can wait for only one object, the objects

can be omitted from the wait-for graph – leaving the simple graph on the left.

Deadlock prevention • One solution is to prevent deadlock. An apparently simple but not very good way to

overcome the deadlock problem is to lock all of the objects used by a transaction when it starts. This would

need to be done as a single atomic step so as to avoid deadlock at this stage. Such a transaction cannot run

into deadlocks with other transactions, but this approach unnecessarily restricts access to shared resources. In

addition, it is sometimes impossible to predict at the start of a transaction which objects will be used. This is

generally the case in interactive applications, for the user would have to say in advance exactly which objects

they were planning to use – this is inconceivable in browsing-style applications, which allow users to find

objects they do not know about in advance. Deadlocks can also be prevented by requesting locks on objects

in a predefined order, but this can result in premature locking and a reduction in concurrency.

 Deadlock detection • Deadlocks may be detected by finding cycles in the wait-for graph. Having detected a

deadlock, a transaction must be selected for abortion to break the cycle.

The software responsible for deadlock detection can be part of the lock manager. It must hold a

Distributed Systems Page 186

representation of the wait-for graph so that it can check it for cycles from time to time. Edges are added to

the graph and removed from the graph by the lock manager’s setLock and unLock operations.

Transaction T Transaction U

Locks Operations Locks

 write lock A

 b.deposit(200) write lock B

 waits for U’s a.withdraw(200); waits for T’s

 lock on B ••• lock on A

(timeout elapses) •••
T’s lock on A becomes

vulnerable,

unlock A, abort T

 a.withdraw(200); write lock A

 unlock A, B

Note that when lock is shared, several edges may be added. An edge T o U is deleted whenever U releases

a lock that T is waiting for and allows T to proceed. See Exercise 16.14 for a more detailed discussion of the

implementation of deadlock detection. If a transaction shares a lock, the lock is not released, but the edges

leading to a particular transaction are removed.

The presence of cycles may be checked each time an edge is added, or less frequently to avoid unnecessary

overhead. When a deadlock is detected, one of the transactions in the cycle must be chosen and then be

aborted. The corresponding node and the edges involving it must be removed from the wait-for graph. This

will happen when the aborted transaction has its locks removed.

The choice of the transaction to abort is not simple. Some factors that may be taken into account are the age

of the transaction and the number of cycles in which it is involved.

For one object Lock to be set

read write commit

Lock already set none OK OK OK

 read OK OK wait

 write OK wait –

 commit wait wait –

Distributed Systems Page 187

transactions are aborted because deadlocks have occurred and a choice can be made as to which transaction

to abort.

Using lock timeouts, we can resolve the deadlock as shown in the above Figure in which the write lock for

T on A becomes vulnerable after its timeout period. Transaction U is waiting to acquire a write lock on A.

Therefore, T is aborted and it releases its lock on A, allowing U to resume and complete the transaction.

When transactions access objects located in several different servers, the possibility of distributed deadlocks

arises. In a distributed deadlock, the wait-for graph can involve objects at multiple locations

Increasing concurrency in locking schemes

Even when locking rules are based on the conflicts between read and write operations and the granularity at

which they are applied is as small as possible, there is still some scope for increasing concurrency. We

discuss two approaches that have been used to deal with this issue. In the first approach (two-version

locking), the setting of exclusive locks is delayed until a transaction commits. In the second approach

(hierarchic locks), mixed-granularity locks are used.

Two-version locking • This is an optimistic scheme that allows one transaction to write tentative versions of

objects while other transactions read from the committed versions of the same objects. read operations only

wait if another transaction is currently committing the same object. This scheme allows more concurrency

than read-write locks, but writing transactions risk waiting or even rejection when they attempt to commit.

Transactions cannot commit their write operations immediately if other uncompleted transactions have read

the same objects. Therefore, transactions that request to commit in such a situation are made to wait until the

reading transactions have completed. Deadlocks may occur when transactions are waiting to commit.

Therefore, transactions may need to be aborted when they are waiting to commit, to resolve deadlocks.

This variation on strict two-phase locking uses three types of lock: a read lock, a write lock and a commit

lock. Before a transaction’s read operation is performed, a read lock must be set on the object – the attempt

to set a read lock is successful unless the object has a commit lock, in which case the transaction waits.

Before a transaction’s

 Lock hierarchy for the banking example

Branch

A B C Account

Distributed Systems Page 188

write operation is performed, a write lock must be set on the object – the attempt to set
write lock is successful unless the object has a write lock or a commit lock, in which case the transaction

waits.

When the transaction coordinator receives a request to commit a transaction, it attempts to convert all that

transaction’s write locks to commit locks. If any of the objects have outstanding read locks, the transaction

must wait until the transactions that set these locks have completed and the locks are released. The

compatibility of read, write and commit locks is shown in Figure 16.24.

There are two main differences in performance between the two-version locking scheme and an ordinary

read-write locking scheme. On the one hand, read operations in the two-version locking scheme are delayed

only while the transactions are being committed, rather than during the entire execution of transactions – in

most cases, the commit protocol takes only a small fraction of the time required to perform an entire

transaction. On the other hand, read operations of one transaction can cause delays in committing other

transactions.

Hierarchic locks • In some applications, the granularity suitable for one operation is not appropriate for

another operation. In our banking example, the majority of the operations require locking at the granularity of

an account. The branchTotal operation is different – it reads the values of all the account balances and would

appear to require ead lock on all of them. To reduce locking overhead, it would be useful to allow locks of

mixed granularity to coexist.

Gray [1978] proposed the use of a hierarchy of locks with different granularities. At each level, the setting of

a parent lock has the same effect as setting all the equivalent child locks. This economizes on the number of

locks to be set. In our banking example, the branch is the parent and the accounts are children (see Figure

16.25).

Mixed-granularity locks could be useful in a diary system in which the data could be structured with the

diary for a week being composed of a page for each day and the Lock hierarchy for a diary

Week

Monday Tuesday Wednesday Thursday Friday
timeslots

9:00–10:00 10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00 15:00–16:00

Distributed Systems Page 189

Lock compatibility table for hierarchic locks

For one object Lock to be set

 read write I-read I-write

Lock already set none OK OK OK OK

read OK wait OK wait

 write wait wait wait wait

 I-read OK wait OK OK

 I-write wait wait OK OK

latter subdivided further into a slot for each hour of the day, as shown in Figure 16.26. The operation to view

a week would cause a read lock to be set at the top of this hierarchy, whereas the operation to enter an

appointment would cause a write lock to be set on a given time slot. The effect of a read lock on a week

would be to prevent write operations on any of the substructures – for example, the time slots for each day in

that week.

In Gray’s scheme, each node in the hierarchy can be locked, giving the owner of the lock explicit access to

the node and giving implicit access to its children. In our example, a read-write lock on the branch

implicitly read-write locks all the accounts. Before a child node is granted a read-write lock, an intention to

read-write lock is set on the parent node and its ancestors (if any). The intention lock is compatible with other

intention locks but conflicts with read and write locks according to the usual rules. Figure 16.27 gives the

compatibility table for hierarchic locks. Gray also proposed a third type of intention lock – one that combines

the properties of a read lock with an intention to write lock.

In our banking example, the branchTotal operation requests a read lock on the branch, which implicitly sets

read locks on all the accounts. A deposit operation needs to set a write lock on a balance, but first it attempts

to set an intention to write lock on the branch. These rules prevent these operations running concurrently.

Hierarchic locks have the advantage of reducing the number of locks when mixed-granularity locking is

required. The compatibility tables and the rules for promoting locks are more complex.

The mixed granularity of locks could allow each transaction to lock a portion whose size is chosen according

to its needs. A long transaction that accesses many objects could lock the whole collection, whereas a short

transaction can lock at finer granularity.

The CORBA Concurrency Control Service supports variable-granularity locking with intention to read and

Distributed Systems Page 190

intention to write lock types. These can be used as described above to take advantage the opportunity to

apply locks at differing granularities in hierarchically structured data.

Optimistic concurrency control
Lock maintenance represents an overhead that is not present in systems that do not support concurrent access

to shared data. Even read-only transactions (queries), which cannot possibly affect the integrity of the data,

must, in general, use locking in order to guarantee that the data being read is not modified by other

transactions at the same time. But locking may be necessary only in the worst case.

For example, consider two client processes that are concurrently incrementing the values of n objects. If the

client programs start at the same time and run for about the same amount of time, accessing the objects in

two unrelated sequences and using a separate transaction to access and increment each item, the chances that

the two programs will attempt to access the same object at the same time are just 1 in n on average, so

locking is really needed only once in every n transactions.

The use of locks can result in deadlock. Deadlock prevention reduces concurrency severely, and therefore

deadlock situations must be resolved either by the use of timeouts or by deadlock detection. Neither of these

is wholly satisfactory for use in interactive programs.

To avoid cascading aborts, locks cannot be released until the end of the transaction. This may reduce

significantly the potential for concurrency.

The alternative approach proposed by Kung and Robinson is ‘optimistic’ because it is based on the

observation that, in most applications, the likelihood of two clients’ transactions accessing the same object is

low. Transactions are allowed to proceed as though there were no possibility of conflict with other

transactions until the client completes its task and issues a closeTransaction request. When a conflict arises,

some transaction is generally aborted and will need to be restarted by the client. Each transaction has the

following phases:

Working phase: During the working phase, each transaction has a tentative version of each of the objects that

it updates. This is a copy of the most recently committed version of the object. The use of tentative versions

allows the transaction to abort (with no effect on the objects), either during the working phase or if it fails

validation due to other conflicting transactions. read operations are performed immediately – if

tentative version for that transaction already exists, a read operation accesses it; otherwise, it accesses the

most recently committed value of the object. write operations record the new values of the objects as

tentative values (which are invisible to other transactions). When there are several concurrent transactions,

several different tentative values of the same object may coexist. In addition, two records are kept of the

Distributed Systems Page 191

objects accessed within a transaction: a read set containing the objects read by the transaction and a write set

containing the objects written by the transaction. Note that as all read operations are performed on committed

versions of the objects (or copies of them), dirty reads cannot occur.

Validation phase: When the closeTransaction request is received, the transaction is validated to establish

whether or not its operations on objects conflict with operations of other transactions on the same objects. If

the validation is successful, then the transaction can commit. If the validation fails, then some form of

conflict resolution must be used and either the current transaction or, in some cases, those with which it

conflicts will need to be aborted.

Update phase: If a transaction is validated, all of the changes recorded in its tentative versions are made

permanent. Read-only transactions can commit immediately after passing validation. Write transactions are

ready to commit once the tentative versions of the objects have been recorded in permanent storage.

Validation of transactions • Validation uses the read-write conflict rules to ensure that the scheduling of a

particular transaction is serially equivalent with respect to all other overlapping transactions – that is, any

transactions that had not yet committed at the time this transaction started. To assist in performing validation,

each transaction is assigned a transaction number when it enters the validation phase (that is, when the client

issuescloseTransaction). If the transaction is validated and completes successfully, it retains this number; if it

fails the validation checks and is aborted, or if the transaction is read only, the number is released for

reassignment. Transaction numbers are integers assigned in ascending sequence; the number of a transaction

therefore defines its position in time – a transaction always finishes its working phase after all transactions

with lower numbers. That is, a transaction with the number Ti always precedes a transaction with the number

Tj if i < j. (If the transaction number were to be assigned at the beginning of the working phase, then a

transaction that reached the end of the working phase before one with a lower number would have to wait

until the earlier one had completed before it could be validated.)The validation test on transaction Tv is based

on conflicts between operations in pairs of transactions Ti and Tv. For a transaction Tv to be serializable with

respect to an overlapping transaction Ti, their operations must conform to the following rules:

Tv Ti Rule

write read 1. Ti must not read objects written by Tv.

read write 2. Tv must not read objects written by Ti.

write write 3.

Ti must not write objects written by Tv and

 Tv must not write objects written by Ti.

Distributed Systems Page 192

As the validation and update phases of a transaction are generally short in duration compared with the

working phase, a simplification can be achieved by making the rule that only one transaction may be in the

validation and update phase at one time. When no two transactions may overlap in the update phase, rule 3 is

satisfied. Note that this restriction on write operations, together with the fact that no dirty reads can occur,

produces strict executions. To prevent overlapping, the entire validation and update phases can be

implemented as a critical section so that only one client at a time can execute it. In order to increase

concurrency, part of the validation and updating may be

Figure 16.28 Validation of
transactions

 Working Validation Update

T
1

Earlier committed

T2

 transactions

Transaction

T3

Tv

 being validated

active1
Later active
transactions active2

implemented outside the critical section, but it is essential that the assignment of transaction numbers is

performed sequentially. We note that at any instant, the current transaction number is like a pseudo-clock that

ticks whenever a transaction completes successfully.

The validation of a transaction must ensure that rules 1 and 2 are obeyed by testing for overlaps between the

objects of pairs of transactions Tv and Ti. There are two forms of validation – backward and forward

Backward validation checks the transaction undergoing validation with other preceding overlapping

transactions – those that entered the validation phase before it. Forward validation checks the transaction

undergoing validation with other later transactions, which are still active.

Backward validation • As all the read operations of earlier overlapping transactions were performed before

the validation of Tv started, they cannot be affected by the writes of the current transaction (and rule 1 is

satisfied). The validation of transaction Tv checks whether its read set (the objects affected by the read

operations of Tv) overlaps with any of the write sets of earlier overlapping transactions, Ti (rule 2). If there is

any overlap, the validation fails.

Let startTn be the biggest transaction number assigned (to some other committed transaction) at the time

Distributed Systems Page 193

when transaction Tv started its working phase and finishTn be the biggest transaction number assigned at the

time when Tv entered the validation phase. The following program describes the algorithm for the validation

of Tv:

boolean valid = true;

for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;

}

Figure 16.28 shows overlapping transactions that might be considered in the validation of a transaction Tv.

Time increases from left to right. The earlier committed transactions are T1, T2 and T3. T1 committed before

Tv started. T2 and T 3 committed before Tv finished its working phase. StartTn + 1 = T2 and finishTn = T3. In

backward validation, the read set of Tv must be compared with the write sets of T 2 and T3.In backward

validation, the read set of the transaction being validated is compared with the write sets of other transactions

that have already committed. Therefore, the only way to resolve any conflicts is to abort the transaction that

is undergoing validation.

In backward validation, transactions that have no read operations (only write operations) need not be

checked.

Optimistic concurrency control with backward validation requires that the write sets of old committed

versions of objects corresponding to recently committed transactions are retained until there are no

unvalidated overlapping transactions with which they might conflict. Whenever a transaction is successfully

validated, its transaction number, startTn and write set are recorded in a preceding transactions list that is

maintained by the transaction service. Note that this list is ordered by transaction number. In an environment

with long transactions, the retention of old write sets of objects may be a problem. For example, in Figure

16.28 the write sets of T1, T2, T3 and Tv must be retained until the active transaction active1 completes. Note

that the although the active transactions have transaction identifiers, they do not yet have transaction

numbers.

Forward validation • In forward validation of the transaction Tv, the write set of Tv is compared with the

read sets of all overlapping active transactions – those that are still in their working phase (rule 1). Rule 2 is

automatically fulfilled because the active transactions do not write until after Tv has completed. Let the active

transactions have (consecutive) transaction identifiers active1 to activeN. The following program describes the

Distributed Systems Page 194

algorithm for the forward validation of Tv:

boolean valid = true;

for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;

}

In Figure 16.28, the write set of transaction Tv must be compared with the read sets of the transactions with

identifiers active1 and active2. (Forward validation should allow for the fact that read sets of active

transactions may change during validation and writing.) As the read sets of the transaction being validated

are not included in the check, read-only transactions always pass the validation check. As the transactions

being compared with the validating transaction are still active, we have a choice of whether to abort the

validating transaction or to pursue some alternative way of resolving the conflict. Härder [1984] suggests

several alternative strategies:

Defer the validation until a later time when the conflicting transactions have finished. However, there is no

guarantee that the transaction being validated will fare any better in the future. There is always the chance

that further conflicting active transactions may start before the validation is achieved.

Abort all the conflicting active transactions and commit the transaction being validated.

Abort the transaction being validated. This is the simplest strategy but has the disadvantage that future

conflicting transactions may be going to abort, in which case the transaction under validation has aborted

unnecessarily.

Comparison of forward and backward validation • We have already seen that forward validation allows

flexibility in the resolution of conflicts, whereas backward validation allows only one choice – to abort the

transaction being validated. In general, the read sets of transactions are much larger than the write sets.

Therefore, backward validation compares a possibly large read set against the old write sets, whereas forward

validation checks a small write set against the read sets of active transactions. We see that backward

validation has the overhead of storing old write sets until they are no longer needed. On the other hand,

forward validation has to allow for new transactions starting during the validation process.

Starvation • When a transaction is aborted, it will normally be restarted by the client program. But in

schemes that rely on aborting and restarting transactions, there is no guarantee that a particular transaction

Distributed Systems Page 195

will ever pass the validation checks, for it may come into conflict with other transactions for the use of

objects each time it is restarted. The prevention of a transaction ever being able to commit is called

starvation.

Occurrences of starvation are likely to be rare, but a server that uses optimistic concurrency control

must ensure that a client does not have its transaction aborted repeatedly. Kung and Robinson suggest

that this could be done if the server detects a transaction that has been aborted several times. They

suggest that when the server detects such a transaction it should be given exclusive access by the use of

a critical section protected by a semaphore.

Timestamp ordering

In concurrency control schemes based on timestamp ordering, each operation in a transaction is validated

when it is carried out. If the operation cannot be validated, the transaction is aborted immediately and can

then be restarted by the client. Each transaction is assigned a unique timestamp value when it starts. The

timestamp defines its position in the time sequence of transactions. Requests from transactions can be totally

ordered according to their timestamps. The basic timestamp ordering rule is based on operation conflicts and

is very simple:

transaction’s request to write an object is valid only if that object was last read and written by earlier

transactions. A transaction’s request to read an object is valid only if that object was last written by an earlier

transaction.

This rule assumes that there is only one version of each object and restricts access to one transaction at a

time. If each transaction has its own tentative version of each object it accesses, then multiple concurrent

transactions can access the same object. The timestamp ordering rule is refined to ensure that each

transaction accesses a consistent set of versions of the objects. It must also ensure that the tentative versions

of each object are committed in the order determined by the timestamps of the transactions that made them.

This is achieved by transactions waiting, when necessary, for earlier transactions to complete their writes.

The write operations may be performed after the closeTransaction operation has returned, without making

the client wait. But the client must wait when read operations need to wait for earlier transactions to finish.

This

Figure 16.29 Operation conflicts for timestamp ordering

Rule
T

c
T

i

1. write read Tc must not write an object that has been read by any Ti where

Distributed Systems Page 196

Ti > Tc.

This requires that Tc • the maximum read timestamp of the

object.

2. write write

Tc must not write an object that has been written by any Ti where

Ti >Tc.

This requires that Tc > the write timestamp of the committed

object.

3. read write

Tc must not read an object that has been written by any Ti where Ti

> Tc.

This requires that Tc > the write timestamp of the committed

object.

cannot lead to deadlock, since transactions only wait for earlier ones (and no cycle could occur in the wait-for

graph).

Timestamps may be assigned from the server’s clock or, as in the previous section,‘pseudo-time’ may be

based on a counter that is incremented whenever a timestamp value is issued. We defer until Chapter 17 the

problem of generating timestamps when the transaction service is distributed and several servers are involved

in a transaction.

As usual, the write operations are recorded in tentative versions of objects and are invisible to other

transactions until a closeTransaction request is issued and the transaction is committed. Every object has a

write timestamp and a set of tentative versions, each of which has a write timestamp associated with it; each

object also has a set of read timestamps. The write timestamp of the (committed) object is earlier than that of

any of its tentative versions, and the set of read timestamps can be represented by its maximum member.

Whenever a transaction’s write operation on an object is accepted, the server creates a new tentative version

of the object with its write timestamp set to the transaction timestamp. A transaction’s read operation is

directed to the version with the maximum write timestamp less than the transaction timestamp. Whenever a

transaction’s read operation on an object is accepted, the timestamp of the transaction is added to its set of

read timestamps. When a transaction is committed, the values of the tentative versions become the values of

the objects, and the timestamps of the tentative versions become the timestamps of the corresponding objects.

In timestamp ordering, each request by a transaction for a read or write operation on an object is checked to

see whether it conforms to the operation conflict rules. A request by the current transaction Tc can conflict

with previous operations done by other transactions, Ti, whose timestamps indicate that they should be later

than Tc. These rules are shown in Figure 16.29, in which Ti > Tc means Ti is later than Tc and Ti < Tc means

Distributed Systems Page 197

Ti, is earlier than Tc.

Timestamp ordering write rule: By combining rules 1 and 2 we get the following rule for deciding whether to

accept a write operation requested by transaction Tc on object D:

if (Tc • maximum read timestamp on D &&

Tc > write timestamp on committed version of D)

perform write operation on tentative version of D with write timestamp Tc else /* write is too

late */

Abort transaction Tc

If a tentative version with write timestamp Tc already exists, the write operation is addressed to

it; otherwise, a new tentative version is created and given write timestamp Tc. Note that any write

that ‘arrives too late’ is aborted – it is too late in the sense that a transaction with a later

timestamp has already read or written the object.

Figure 16.30 illustrates the action of a write operation by transaction T3 in cases where T3

• maximum read timestamp on the object (the read timestamps are not shown). In cases (a) to

(c), T3 > write timestamp on the committed version of the object and a tentative version with

write timestamp T3 is inserted at the appropriate place in the list of tentative versions ordered by

their transaction timestamps. In case (d), T3 < write timestamp on the committed version of the

object and the transaction is aborted.

Timestamp ordering read rule: By using rule 3 we arrive at the following rule for deciding whether to accept

immediately, to wait or to reject a read operation requested by transaction Tc on object D:

if (Tc > write timestamp on committed version of D) {

let Dselected be the version of D with the maximum write timestamp ð Tc if (Dselected is

committed)

perform read operation on the version Dselected

else

wait until the transaction that made version Dselected commits or aborts then

reapply the read rule

} else

Abort transaction Tc

Distributed Systems Page 198

Note:

If transaction Tc has already written its own version of the object, this will be used.

A read operation that arrives too early waits for the earlier transaction to complete. If the earlier transaction

commits, then Tc will read from its committed version. If it aborts, then Tc will repeat the read rule (and

select the previous version). This rule prevents dirty reads.

A read operation that ‘arrives too late’ is aborted – it is too late in the sense that a transaction with a later

timestamp has already written the object.

Figure 16.31 illustrates the timestamp ordering read rule. It includes four cases labeled to (d), each of which

illustrates the action of a read operation by transaction T3. In each case, a version whose write timestamp is

less than or equal to T3 is selected. If such a version exists, it is indicated with a line. In cases (a) and (b) the

read operation is directed to a committed version – in (a) it is the only version, whereas in (b) there is a tentative

version belonging to a later transaction. In case (c) the read operation is directed to a tentative version and must wait

until the transaction that made it commits or aborts. In case (d) there is no suitable version to read and transaction T3 is

aborted.

When a coordinator receives a request to commit a transaction, it will always be able to do so because all the

operations of transactions are checked for consistency with those of earlier transactions before being carried

out. The committed versions of each object must be created in timestamp order. Therefore, a coordinator

sometimes needs to wait for earlier transactions to complete before writing all the committed versions of the

objects accessed by a particular transaction, but there is no need for the client to wait. In order to make a

transaction recoverable after a server crash, the tentative versions of objects and the fact that the transaction

has committed must be written to permanent storage before acknowledging the client’s request to commit the

transaction.

Note that this timestamp ordering algorithm is a strict one – it ensures strict executions of transactions (see

Section 16.2). The timestamp ordering read rule delays a transaction’s read operation on any object until all

transactions that had previously written that object have committed or aborted. The arrangement to commit

versions in order ensures that the execution of a transaction’s write operation on any object is delayed until

all transactions that had previously written that object have committed or aborted.

 Read operations and timestamps

(a) T3 read (b) T3 read

T
2

read
T2 T4

read

Distributed Systems Page 199

proceeds proceeds

Selected Time Selected Time

(c) T3 read (d) T3 read

 read waits Transaction

T1 T2
T

4 aborts
Selected Time Time

Flat and nested distributed transactions

A client transaction becomes distributed if it invokes operations in several different servers. There are two

different ways that distributed transactions can be structured: as flat transactions and as nested transactions.

In a flat transaction, a client makes requests to more than one server. For example, in Figure 17.1(a),

transaction T is a flat transaction that invokes operations on objects in servers X, Y and Z. A flat client

transaction completes each of its requests before going on to the next one. Therefore, each transaction

accesses servers’ objects sequentially. When servers use locking, a transaction can only be waiting for one

object at a time.

In a nested transaction, the top-level transaction can open subtransactions, and each subtransaction can open

further subtransactions down to any depth of nesting. Figure 17.1(b) shows a client transaction T that opens

two subtransactions, T1 and T2, which access objects at servers X and Y. The subtransactions T1 and T2 open

further subtransactions T11, T 12, T21, and T22, which access objects at servers M, N and P. In the nested

case, subtransactions at the same level can run concurrently, so T1 and T2 are concurrent, and as they

invoke objects in different servers, they can run in parallel. The four subtransactions T11, T12, T21 and T22

also run concurrently

Distributed Systems Page 200

Consider a distributed transaction in which a client transfers $10 from account A to C and then transfers $20

from B to D. Accounts A and B are at separate servers X and Y and accounts C and D are at server Z. If this

transaction is structured as a set of four nested transactions, as shown in Figure 17.2, the four requests (two

deposits and two withdraws) can run in parallel and the overall effect can be achieved with better

performance than a simple transaction in which the four operations are invoked sequentially.

Atomic commit protocols:

A transaction comes to an end when the client requests that it be committed or aborted. A simple way to

complete the transaction in an atomic manner is for the coordinator to communicate the commit or abort

request to all of the participants in the transaction and to keep on repeating the request until all of them have

acknowledged that they have carried it out. This is an example of a one-phase atomic commit protocol.

This simple one-phase atomic commit protocol is inadequate, though, because it does not allow a server to

make a unilateral decision to abort a transaction when the client requests a commit. Reasons that prevent a

server from being able to commit its part of a transaction generally relate to issues of concurrency control.

For example, if locking is in use, the resolution of a deadlock can lead to the aborting of a transaction without

the client being aware unless it makes another request to the server. Also if optimistic concurrency control is

in use, the failure of validation at a server would cause it to decide to abort the transaction. Finally, the

coordinator may not know if a server has crashed and been replaced during the progress of a distributed

transaction – such a server will need to abort the transaction.The two-phase commit protocol is designed to allow

any participant to abort its part of a transaction. Due to the requirement for atomicity, if one part of a transaction is

aborted, then the whole transaction must be aborted. In the first phase of the protocol, each participant votes for the

transaction to be committed or aborted. Once a participant has voted to commit a transaction, it is not allowed to abort

it. Therefore, before a participant votes to commit a transaction, it must ensure that it will eventually be able to carry

out its part of the commit protocol, even if it fails and is replaced in the interim. A participant in a transaction is said to

Distributed Systems Page 201

be in a prepared state for a transaction if it will eventually be able to commit it. To make sure of this, each participant

saves in permanent storage all of the objects that it has altered in the transaction, together with its status – prepared.

In the second phase of the protocol, every participant in the transaction carries out the joint decision. If any

one participant votes to abort, then the decision must be to abort the transaction. If all the participants vote to

commit, then the decision is to commit the transaction.

The problem is to ensure that all of the participants vote and that they all reach the same decision. This is

fairly simple if no errors occur, but the protocol must work correctly even when some of the servers fail,

messages are lost or servers are temporarily unable to communicate with one another.

The two-phase commit protocol

During the progress of a transaction, there is no communication between the coordinator and the participants

apart from the participants informing the coordinator when they join the transaction. A client’s request to

commit (or abort) a transaction is directed to the coordinator. If the client requests abortTransaction, or if the

transaction is aborted by one of the participants, the coordinator informs all participants immediately. It is

when the client asks the coordinator to commit the transaction that the two-phase commit protocol comes

into use.

In the first phase of the two-phase commit protocol the coordinator asks all the participants if they are

prepared to commit; in the second, it tells them to commit (or abort) the transaction. If a participant can

commit its part of a transaction, it will agree as soon as it has recorded the changes it has made (to the

objects) and its status in

Figure 17.4 Operations for two-phase commit protocol

canCommit?(trans)o Yes / No
Call from coordinator to participant to ask whether it can commit a transaction.
Participant replies with its vote.

doCommit(trans)

Call from coordinator to participant to tell participant to commit its part of a

transaction.

doAbort(trans)
Call from coordinator to participant to tell participant to abort its part of a transaction.

haveCommitted(trans, participant)

Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans) o Yes / No
Call from participant to coordinator to ask for the decision on a transaction when it has voted

Yes but has still had no reply after some delay. Used to recover from server crash or delayed

messages.

Distributed Systems Page 202

permanent storage and is therefore prepared to commit. The coordinator in a distributed transaction

communicates with the participants to carry out the two-phase commit protocol by means of the operations

summarized in Figure 17.4. The methods canCommit, doCommit and doAbort are methods in the interface of

the participant. The methods haveCommitted and getDecision are in the coordinator interface.

The two-phase commit protocol consists of a voting phase and a completion phase, as shown in Figure 17.5.

By the end of step 2, the coordinator and all the participants that voted Yes are prepared to commit. By the

end of step 3, the transaction is effectively completed. At step 3a the coordinator and the participants are

committed, so the coordinator can report a decision to commit to the client. At 3b the coordinator reports a

decision to abort to the client.

At step 4 participants confirm that they have committed so that the coordinator knows when the information

it has recorded about the transaction is no longer needed.

This apparently straightforward protocol could fail due to one or more of the servers crashing or due to a

breakdown in communication between the servers. To deal with the possibility of crashing, each server saves

information relating to the two-phase commit protocol in permanent storage. This information can be

retrieved by a new process that is started to replace a crashed server. The recovery aspects of distributed

transactions are discussed in Section 17.6.

The exchange of information between the coordinator and participants can fail when one of the servers

crashes, or when messages are lost. Timeouts are used to avoid processes blocking forever. When a timeout

occurs at a process, it must take an appropriate action. To allow for this the protocol includes a timeout action

for each step at which a process may block. These actions are designed to allow for the fact that in an

asynchronous system, a timeout may not necessarily imply that a server has failed

The two-phase commit protocol

Phase 1 (voting phase):

 The coordinator sends a canCommit? request to each of the participants in the transaction.

 When a participant receives a canCommit? request it replies with its vote (Yes or No) to the

coordinator. Before voting Yes, it prepares to commit by saving objects in permanent

storage. If the vote is No, the participant aborts immediately.

Phase 2 (completion according to outcome of vote):

 The coordinator collects the votes (including its own).

(a)If there are no failures and all the votes are Yes, the coordinator decides to commit the

Distributed Systems Page 203

transaction and sends a doCommit request to each of the participants.

(b)Otherwise, the coordinator decides to abort the transaction and sends doAbort requests to

all participants that voted Yes.

 Participants that voted Yes are waiting for a doCommit or doAbort request from the

coordinator. When a participant receives one of these messages it acts accordingly and, in

the case of commit, makes a haveCommitted call as confirmation to the coordinator.

Concurrency control in distributed transactions

Locking

In a distributed transaction, the locks on an object are held locally (in the same server). The local lock

manager can decide whether to grant a lock or make the requesting transaction wait. However, it cannot

release any locks until it knows that the transaction has been committed or aborted at all the servers involved

in the transaction. When locking is used for concurrency control, the objects remain locked and are

unavailable for other transactions during the atomic commit protocol, although an aborted transaction

releases its locks after phase 1 of the protocol.

As lock managers in different servers set their locks independently of one another, it is possible that different

servers may impose different orderings on transactions. Consider the following interleaving of transactions T

and U at servers X and Y:

 T U

write(A) at X locks A

 write(B) at Y locks B

read(B) at Y waits for U

 read(A) at X waits for T

The transaction T locks object A at server X, and then transaction U locks object B at server Y. After

that, T tries to access B at server Y and waits for U’s lock. Similarly, transaction U tries to access A at

server X and has to wait for T’s lock. Therefore, we have T before U in one server and U before T in

the other. These different orderings can lead to cyclic dependencies between transactions, giving rise

to a distributed deadlock situation. The detection and resolution of distributed deadlocks is discussed

in Section 17.5. When a deadlock is detected, a transaction is aborted to resolve the deadlock. In this

case, the coordinator will be informed and will abort the transaction at the participants involved in the

transaction.

Timestamp ordering concurrency control

Distributed Systems Page 204

In a single server transaction, the coordinator issues a unique timestamp to each transaction when it starts.

Serial equivalence is enforced by committing the versions of objects in the order of the timestamps of

transactions that accessed them. In distributed transactions, we require that each coordinator issue globally

unique timestamps. A globally unique transaction timestamp is issued to the client by the first coordinator

accessed by a transaction. The transaction timestamp is passed to the coordinator at each server whose

objects perform an operation in the transaction.

The servers of distributed transactions are jointly responsible for ensuring that they are performed in a

serially equivalent manner. For example, if the version of an object accessed by transaction U commits after

the version accessed by T at one server, if T and U access the same object as one another at other servers they

must commit them in the same order. To achieve the same ordering at all the servers, the coordinators must

agree as to the ordering of their timestamps. A timestamp consists of a <local timestamp, server-id> pair.

The agreed ordering of pairs of timestamps is based on a comparison in which the server-id part is less

significant.

The same ordering of transactions can be achieved at all the servers even if their local clocks are not

synchronized. However, for reasons of efficiency it is required that the timestamps issued by one coordinator

be roughly synchronized with those issued by the other coordinators. When this is the case, the ordering of

transactions generally corresponds to the order in which they are started in real time. Timestamps can be kept

roughly synchronized by the use of synchronized local physical clocks

When timestamp ordering is used for concurrency control, conflicts are resolved as each operation is

performed using the rules given in Section 16.6. If the resolution of a conflict requires a transaction to be

aborted, the coordinator will be informed and it will abort the transaction at all the participants. Therefore

any transaction that reaches the client request to commit should always be able to commit, and participants in

the two-phase commit protocol will normally agree to commit. The only situation in which a participant will

not agree to commit is if it has crashed during the transaction.

Distributed deadlocks

With deadlock detection schemes, a transaction is aborted only when it is involved in a deadlock. Most

deadlock detection schemes operate by finding cycles in the transaction wait-for graph. In a distributed

Distributed Systems Page 205

system involving multiple servers being accessed by multiple transactions, a global

U V W

d.deposit(10) lock D

 b.deposit(10) lock B

a.deposit(20) lock A at Y

 at X

 c.deposit(30) lock C

b.withdraw(30

) wait at Y at Z

c.withdraw(20

) wait at Z

a.withdraw(20

) wait at X

wait-for graph can in theory be constructed from the local ones. There can be a cycle in the global wait-for

graph that is not in any single local one – that is, there can be a distributed deadlock. Recall that the wait-for

graph is a directed graph in which nodes represent transactions and objects, and edges represent either an

object held by a transaction or a transaction waiting for an object. There is a deadlock if and only if there is a

cycle in the wait-for graph.

Figure 17.12 shows the interleavings of the transactions U, V and W involving the objects A and B managed

by servers X and Y and objects C and D managed by server Z.

The complete wait-for graph in Figure 17.13(a) shows that a deadlock cycle consists of alternate edges,

which represent a transaction waiting for an object and an object held by a transaction. As any transaction

can only be waiting for one object at a time, objects can be left out of wait-for graphs, as shown in Figure

17.13(b).

Detection of a distributed deadlock requires a cycle to be found in the global transaction wait-for graph that

is distributed among the servers that were involved in the transactions. Local wait-for graphs can be built by

the lock manager at each server, as discussed in Chapter 16. In the above example, the local wait-for graphs

of the servers are:

 server Y: U o V (added when U requests b.withdraw(30))

server Z: V o W (added when V requests c.withdraw(20))

server X: W o U (added when W requests a.withdraw(20))

As the global wait-for graph is held in part by each of the several servers involved, communication between

Distributed Systems Page 206

these servers is required to find cycles in the graph.

A simple solution is to use centralized deadlock detection, in which one server takes on the role of

global deadlock detector. From time to time, each server sends the latest copy of its local wait-for

graph to the global deadlock detector, which amalgamates the information in the local graphs in order

to construct a global wait-for graph. The global deadlock detector checks for cycles in the global

wait-for graph When it finds a cycle, it makes a decision on how to resolve the deadlock and tells the

servers which transaction to abort.

Centralized deadlock detection is not a good idea, because it depends on a single server to carry it out. It

suffers from the usual problems associated with centralized solutions in distributed systems – poor

availability, lack of fault tolerance and no ability to scale. In addition, the cost of the frequent transmission of

local wait-for graphs is high. If the global graph is collected less frequently, deadlocks may take longer to be

detected.

Phantom deadlocks • A deadlock that is ‘detected’ but is not really a deadlock is called phantom deadlock.

In distributed deadlock detection, information about wait-for relationships between transactions is

transmitted from one server to another. If there is a deadlock, the necessary information will eventually be

collected in one place and a cycle will be detected. As this procedure will take some time, there is a chance

that one of the transactions that holds a lock will meanwhile have released it, in which case the deadlock will

no longer exist.

Transaction recovery

The atomic property of transactions requires that all the effects of committed transactions and none of

the effects of incomplete or aborted transactions are reflected in the objects they accessed. This

property can be described in terms of two aspects: durability and failure atomicity. Durability requires

that objects are saved in permanent storage and will be available indefinitely thereafter. Therefore an

acknowledgement of a client’s commit request implies that all the effects of the transaction have been

recorded in permanent storage as well as in the server’s (volatile) objects. Failure atomicity requires

that effects of transactions are atomic even when the server crashes. Recovery is concerned with

ensuring that a server’s objects are durable and that the service provides failure atomicity.

Although file servers and database servers maintain data in permanent storage, other kinds of servers

of recoverable objects need not do so except for recovery purposes. In this chapter, we assume that

when a server is running it keeps all of its objects in its volatile memory and records its committed

objects in a recovery file or files. Therefore recovery consists of restoring the server with the latest

Distributed Systems Page 207

committed versions of its objects from permanent storage. Databases need to deal with large volumes

of data. They generally hold the objects in stable storage on disk with a cache in volatile memory.

The requirements for durability and failure atomicity are not really independent of one another and

can be dealt with by a single mechanism – the recovery manager. The tasks of a recovery manager

are:

 to save objects in permanent storage (in a recovery file) for committed transactions;

 to restore the server’s objects after a crash;

 to reorganize the recovery file to improve the performance of recovery;

 to reclaim storage space (in the recovery file).

In some cases, we require the recovery manager to be resilient to media failures. Corruption during a

crash, random decay or a permanent failure can lead to failures of the recovery file, which can result

in some of the data on the disk being lost. In such cases we need another copy of the recovery file.

Stable storage, which is implemented so as to be very unlikely to fail by using mirrored disks or

copies at a different location may be used for this purpose.

Intentions list • Any server that provides transactions needs to keep track of the objects accessed by clients’

transactions. Recall from Chapter 16 that when a client opens a transaction, the server first contacted

provides a new transaction identifier and

Types of entry in a recovery file

Type of entry Description of contents of entry

Object A value of an object.

Transaction identifier, transaction status (prepared,

committed,

Transaction

status

aborted) and other status values used for the two-phase

commit

 protocol.

Transaction identifier and a sequence of intentions, each of

which

Intentions list consists of <objectID, Pi>, where Pi is the position in the recovery

 file of the value of the object.

returns it to the client. Each subsequent client request within a transaction up to anincluding the

commit or abort request includes the transaction identifier as an argument. During the progress

of a transaction, the update operations are applied to a private set of tentative versions of the

objects belonging to the transaction.

Distributed Systems Page 208

At each server, an intentions list is recorded for all of its currently active transactions – an intentions list of a

particular transaction contains a list of the references and the values of all the objects that are altered by that

transaction. When a transaction is committed, that transaction’s intentions list is used to identify the objects it

affected. The committed version of each object is replaced by the tentative version made by that transaction,

and the new value is written to the server’s recovery file. When a transaction aborts, the server uses the

intentions list to delete all the tentative versions of objects made by that transaction.

Recall also that a distributed transaction must carry out an atomic commit protocol before it can be

committed or aborted. Our discussion of recovery is based on the two-phase commit protocol, in which all

the participants involved in a transaction first say whether they are prepared to commit and later, if all the

participants agree, carry out the actual commit actions. If the participants cannot agree to commit, they must

abort the transaction.

At the point when a participant says it is prepared to commit a transaction, its recovery manager must have

saved both its intentions list for that transaction and the objects in that intentions list in its recovery file, so

that it will be able to carry out the commitment later, even if it crashes in the interim.

When all the participants involved in a transaction agree to commit it, the coordinator informs

the client and then sends messages to the participants to commit their part of the transaction.

Once the client has been informed that a transaction has committed, the recovery files of the

participating servers must contain sufficient information to ensure that the transaction is

committed by all of the servers, even if some of them crash between preparing to commit and

committing.

Entries in recovery file • To deal with recovery of a server that can be involved in

distributedtransactions, further information in addition to the values of the objects is stored

in the recovery file. This information concerns the status of each transaction –

whether it is committed, aborted or prepared to commit

Logging: In the logging technique, the recovery file represents a log containing the history of all the

transactions performed by a server. The history consists of values of objects, transaction status entries and

transaction intentions lists. The order of the entries in the log reflects the order in which transactions have

prepared, committed and aborted at that server. In practice, the recovery file will contain a recent snapshot of

the values of all the objects in the server followed by a history of transactions postdating the snapshot.

During the normal operation of a server, its recovery manager is called whenever a transaction prepares to

Distributed Systems Page 209

commit, commits or aborts a transaction. When the server is prepared to commit a transaction, the recovery

manager appends all the objects in its intentions list to the recovery file, followed by the current status of that

transaction (prepared) together with its intentions list. When a transaction is eventually committed or

aborted, the recovery manager appends the corresponding status of the transaction to its recovery file.

It is assumed that the append operation is atomic in the sense that it writes one or more complete entries to

the recovery file. If the server fails, only the last write can be incomplete. To make efficient use of the disk,

several subsequent writes can be buffered and then written to disk as a single write. An additional advantage

of the logging technique is that sequential writes to disk are faster than writes to random locations.

After a crash, any transaction that does not have a committed status in the log is aborted. Therefore when a

transaction commits, its committed status entry must be forced to the log – that is, written to the log together

with any other buffered entries. The recovery manager associates a unique identifier with each object so that

the successive versions of an object in the recovery file may be associated with the server’s objects. For

example, a durable form of a remote object reference such as a CORBA persistent reference will do as an

object identifier Figure 17.19 illustrates the log mechanism for the banking service transactions T and U in

Figure 16.7. The log was recently reorganized, and entries to the left of the double line represent a snapshot

of the values of A, B and C before transactions T and U started. In this diagram, we use the names A, B and C

as unique identifiers for objects. We show the situation when transaction T has committed and transaction U

has prepared but not committed. When transaction T prepares to commit, the values of objects A and B are

written at positions P1 and P2 in the log, followed by a prepared transaction status entry for T with its

intentions list (< A, P1 >, < B, P2 >). When transaction T commits, a committed transaction status entry for T

is put at position P4. Then when transaction U prepares to commit, the values of objects C and B are written

at positions P5 and P6 in the log, followed by a prepared transaction status entry for U with its intentions list

(< C, P5 >, < B, P6 >).

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

Object:
A

Object:B
Object:C

Object:
A Object:B Trans:T Trans:T

Object:C Object:B
Trans:U

100 200 300 80 220 prepared

committe

d 278 242 prepared

<A, P1>

<C, P5>

 <B, P2> <B, P6>

 P0 P3 P4

 Checkpoint End

Distributed Systems Page 210

 of log

Recovery of objects • When a server is replaced after a crash, it first sets default initial values for its objects

and then hands over to its recovery manager. The recovery manager is responsible for restoring the server’s

objects so that they include all the effects of the committed transactions performed in the correct order and

none of the effects of incomplete or aborted transactions.

The most recent information about transactions is at the end of the log. There are two approaches to restoring

the data from the recovery file. In the first, the recovery manager starts at the beginning and restores the

values of all of the objects from the most recent checkpoint (discussed in the next section). It then reads in

the values of each of the objects, associates them with their transaction’s intentions lists and for committed

transactions replaces the values of the objects. In this approach, the transactions are replayed in the order in

which they were executed and there could be a large number of them. In the second approach, the recovery

manager will restore a server’s objects by ‘reading the recovery file backwards’. The recovery file has been

structured so that there is a backwards pointer from each transaction status entry to the next. The recovery

manager uses transactions with committed status to restore those objects that have not yet been restored. It

continues until it has restored all of the server’s objects. This has the advantage that each object is restored

once only To recover the effects of a transaction, a recovery manager gets the corresponding intentions list

from its recovery file. The intentions list contains the identifiers and positions in the recovery file of values of

all the objects affected by the transaction.

If the server fails at the point reached in Figure 17.19, its recovery manager will recover the objects as

follows. It starts at the last transaction status entry in the log (at P7) and concludes that transaction U has not

committed and its effects should be ignored. It then moves to the previous transaction status entry in the log

(at P4) and concludes that transaction T has committed. To recover the objects affected by transaction T, it

moves to the previous transaction status entry in the log (at P3) and finds the intentions list for T (< A, P1 >, <

B, P2 >). It then restores objects A and B from the values at P1 and P2. As it has not yet restored C, it moves

back to P0, which is a checkpoint, and restores C.

To help with subsequent reorganization of the recovery file, the recovery manager notes all the prepared

transactions it finds during the process of restoring the server’s objects. For each prepared transaction, it adds

an aborted transaction status to the recovery file. This ensures that in the recovery file, every transaction is

eventually shown as either committed or aborted.

The server could fail again during the recovery procedures. It is essential that recovery be idempotent, in the

sense that it can be done any number of times with the same effect. This is straightforward under our

assumption that all the objects are restored to volatile memory. In the case of a database, which keeps its

Distributed Systems Page 211

objects in permanent storage with a cache in volatile memory, some of the objects in permanent storage will

be out of date when a server is replaced after a crash. Therefore the recovery manager has to restore the

objects in permanent storage. If it fails during recovery, the partially restored objects will still be there. This

makes idempotence a little harder to achieve.

Recovery of the two-phase commit protocol In a distributed transaction, each server keeps its own

recovery file. The recovery management described in the previous section must be extended to deal with any

transactions that are performing the two-phase commit protocol at the time when a server fails. The recovery

managers use two new status values for this purpose: done and uncertain. These status values are shown in

Figure 17.6. A coordinator uses committed to indicate that the outcome of the vote is Yes and done to indicate

that the two-phase commit protocol is complete. A participant uses uncertain to indicate that it has voted Yes

but does not yet know the outcome of the vote. Two additional types of entry allow a coordinator to record a

list of participants and a participant to record its coordinator:

Type of entry Description of contents of entry

Coordinator Transaction identifier, list of participants

Participant Transaction identifier, coordinator

In phase 1 of the protocol, when the coordinator is prepared to commit (and has already added a prepared

status entry to its recovery file), its recovery manager adds a coordinator entry to its recovery file. Before a

participant can vote Yes, it must have already prepared to commit (and must have already added a prepared

status entry to its recovery file). When it votes Yes, its recovery manager records a participant entry and adds

an uncertain transaction status to its recovery file as a forced write. When a participant votes No, it adds an

abort transaction status to its recovery file.

In phase 2 of the protocol, the recovery manager of the coordinator adds either a committed or an aborted

transaction status to its recovery file, according to the decision. This must be a forced write (that is, it is

written immediately to the recovery file). Recovery managers of participants add a commit or abort

transaction status to their recovery files according to the message received from the coordinator. When a

coordinator has received a confirmation from all of its participants, its recovery manager adds a done

transaction status to its recovery file – this need not be forced. The done status entry is not part of the

protocol but is used when the recovery file is reorganized. Figure 17.21 shows the entries in a log for

transaction T, in which the server played the coordinator role, and for transaction U, in which the server

played the participant role. For both transactions, the prepared transaction status entry comes first. In the

Distributed Systems Page 212

case of a coordinator it is followed by a coordinator entry and a committed transaction status entry. The done

transaction status entry is not shown in Figure 17.21. In the case of a participant, the prepared transaction

status entry is followed by a participant entry whose state is uncertain and then a committed or aborted

transaction status entry.

Figure 17.21 Log with entries relating to two-phase commit protocol

 Trans:T
Coord’r:
T • • Trans:T Trans:U • •

Part’pant:
U Trans:U Trans:U

prepared

part’pant committe

d prepared
 Coord’r: . .

. uncertain

committe

d

list: . . .

 intentions intentions

 list list

When a server is replaced after a crash, the recovery manager has to deal with the two-phase commit protocol

in addition to restoring the objects. For any transaction where the server has played the coordinator role, it

should find a coordinator entry and a set of transaction status entries. For any transaction where the server

played the participant role, it should find a participant entry and a set of transaction status entries. In both

cases, the most recent transaction status entry – that is, the one nearest the end of the log – determines the

transaction status at the time of failure. The action of the recovery manager with respect to the two-phase

commit protocol for any transaction depends on whether the server was the coordinator or a participant and

on its status at the time of failure, as shown in Figure 17.22.

Reorganization of recovery file • Care must be taken when performing a checkpoint to ensure that

coordinator entries of transactions without status done are not removed from the recovery file. These entries

must be retained until all the participants have confirmed that they have completed their transactions. Entries

with status done may be discarded. Participant entries with transaction state uncertain must also be retained.

Recovery of nested transactions • In the simplest case, each subtransaction of a nested transaction accesses

a different set of objects. As each participant prepares to commit during the two-phase commit protocol, it

writes its objects and intentions lists to the local recovery file, associating them with the transaction identifier

of the top-level transaction. Although nested transactions use a special variant of the two-phase commit

protocol, the recovery manager uses the same transaction status values as for flat transactions.

However, abort recovery is complicated by the fact that several subtransactions at the same and different

levels in the nesting hierarchy can access the same object. Section 16.4 describes a locking scheme in which

parent transactions inherit locks and subtransactions acquire locks from their parents. The locking scheme

forces parent transactions and subtransactions to access common data objects at different times and ensures

Distributed Systems Page 213

that accesses by concurrent subtransactions to the same objects must be serialized.

Objects that are accessed according to the rules of nested transactions are made recoverable by providing

tentative versions for each subtransaction. The relationship between the tentative versions of an object used

by the subtransactions of a nested transaction is similar to the relationship between the locks. To support

recovery from aborts, the server of an object shared by transactions at multiple levels provides a stack of

tentative versions – one for each nested transaction to use.

