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UNIT I 

 
 

Characterization of Distributed Systems: Introduction, Examples of Distributed systems, Resource sharing 

and web, challenges. 

System Models: Introduction, Architectural and Fundamental models. 

  

Introduction 

A distributed system is a software system in which components located on networked 

computers communicate and coordinate their actions by passing messages. The components 

interact with each other in order to achieve a common goal. 

Distributed systems Principles 

A distributed system consists of a collection of autonomous computers, connected 

through a network and distribution middleware, which enables computers to coordinate their 

activities and to share the resources of the system, so that users perceive the system as a single, 

integrated computing facility. 

Centralised System Characteristics 

• One component with non-autonomous parts 

• Component shared by users all the time 

• All resources accessible 

• Software runs in a single process 

• Single Point of control 

• Single Point of failure 

Distributed System Characteristics 

• Multiple autonomous components 

• Components are not shared by all users 

• Resources may not be accessible 

• Software runs in concurrent processes on different processors 

• Multiple Points of control 

• Multiple Points of failure 

Examples of distributed systems and applications of distributed computing include the following: 

• telecommunication networks: 

• telephone networks and cellular networks, 

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Cellular_network
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• computer networks such as the Internet, 

• wireless sensor networks, 

• routing algorithms; 

• twork applications: 

• World wide web and peer-to-peer networks, 

• massively multiplayer online games and virtual reality communities, 

• distributed databases and distributed database management systems, 

• network file systems, 

• distributed information processing systems such as banking systems and airline reservation 

systems; 

• real-time process control: 

• aircraft control systems, 

• industrial control systems; 

• parallel computation: 

• scientific computing, including cluster computing and grid computing and various volunteer 

computing projects (see the list of distributed computing projects), 

• distributed rendering in computer graphics. 

RESOURCE SHARING 

• Is the primary motivation of distributed computing 

• Resources types 

– Hardware, e.g. printer, scanner, camera 

– Data, e.g. file, database, web page 

– More specific functionality, e.g. search engine, file 

• Service 

– manage a collection of related resources and present their functionalities to users 

and applications 

• Server 

– a process on networked computer that accepts requests from processes on other 

computers to perform a service and responds appropriately 

• Client 

– the requesting process 

• Remote invocation 

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Routing_algorithm
https://en.wikipedia.org/wiki/World_wide_web
https://en.wikipedia.org/wiki/Peer-to-peer_network
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Virtual_reality
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_database_management_system
https://en.wikipedia.org/wiki/Distributed_file_system
https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Parallel_computation
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Volunteer_computing
https://en.wikipedia.org/wiki/List_of_distributed_computing_projects
https://en.wikipedia.org/wiki/Distributed_rendering
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THE CHALLENGES IN DISTRIBUTED SYSTEM: 

Heterogeneity 

The Internet enables users to access services and run applications over a heterogeneous 

collection of computers and networks. Heterogeneity (that is, variety and difference) applies to 

all of the following: 

• networks; 

• computer hardware; 

• operating systems; 

• programming languages; 

• implementations by different developers 

Although the Internet consists of many different sorts of network, their differences are masked 

by the fact that all of the computers attached to them use the Internet protocols to communicate 

with one another. For example, a computer attached to an Ethernet has an implementation of the 

Internet protocols over the Ethernet, whereas a computer on a different sort of network will need 

an implementation of the Internet protocols for that network. 

Data types such as integers may be represented in different ways on different sorts of hardware – 

for example, there are two alternatives for the byte ordering of integers. These differences in 

representation must be dealt with if messages are to be exchanged between programs running on 

different hardware. Although the operating systems of all computers on the Internet need to 

include an implementation of the Internet protocols, they do not necessarily all provide the same 

application programming interface to these protocols. For example, the calls for exchanging 

messages in UNIX are different from the calls in Windows. 

 

Different programming languages use different representations for characters and data structures 

such as arrays and records. These differences must be addressed if programs written in different 

languages are to be able to communicate with one another. Programs written by different 

developers cannot communicate with one another 

unless they use common standards, for example, for network communication and the 

representation of primitive data items and data structures in messages. For this to happen, 

standards need to be agreed and adopted – as have the Internet protocols. 
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Middleware • The term middleware applies to a software layer that provides a programming 

abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating 

systems and programming languages. The Common Object Request Broker (CORBA), is an 

example. Some middleware, such as Java Remote Method Invocation (RMI), supports only a 

single programming language. Most middleware is implemented over the Internet protocols, 

which themselves mask the differences of the underlying networks, but all middleware deals 

with the differences in operating systems and hardware. 

Heterogeneity and mobile code • The term mobile code is used to refer to program code that 

can be transferred from one computer to another and run at the destination – Java applets are an 

example. Code suitable for running on one computer is not necessarily suitable for running on 

another because executable programs are normally specific both to the instruction set and to the 

host operating system. 

The virtual machine approach provides a way of making code executable on a variety of host 

computers: the compiler for a particular language generates code for a virtual machine instead of 

 particular hardware order code. For example, the Java compiler produces code for a Java 

virtual machine, which executes it by interpretation. 

The Java virtual machine needs to be implemented once for each type of computer to enable Java 

programs to run. 

Today, the most commonly used form of mobile code is the inclusion Javascript programs in 

some web pages loaded into client browsers. 

Openness 

The openness of a computer system is the characteristic that determines whether the system can 

be extended and reimplemented in various ways. The openness of distributed systems is 

determined primarily by the degree to which new resource-sharing services can be added and be 

made available for use by a variety of client programs. 

Openness cannot be achieved unless the specification and documentation of the key software 

interfaces of the components of a system are made available to software developers. In a word, 

the key interfaces are published. This process is akin to the standardization of interfaces, but it 

often bypasses official standardization procedures, 

which are usually cumbersome and slow-moving. However, the publication of interfaces is only 

the starting point for adding and extending services in a distributed system. The challenge to 

designers is to tackle the complexity of distributed systems consisting of many components  
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engineered by different people. The designers of the Internet protocols introduced a series of 

documents called ‘Requests For Comments’, or RFCs, each of which is known by a number. The 

specifications of the Internet communication protocols were published in this series in the early 

1980s, followed by specifications for applications that run over them, such as file transfer, email 

and telnet by the mid-1980s. 

Systems that are designed to support resource sharing in this way are termed open distributed 

systems to emphasize the fact that they are extensible. They may be extended at the hardware 

level by the addition of computers to the network and at the software level by the introduction of 

new services and the reimplementation of old ones, enabling application programs to share 

resources. 

To summarize: 

• Open systems are characterized by the fact that their key interfaces are published. 

• Open distributed systems are based on the provision of a uniform communication mechanism 

and published interfaces for access to shared resources. 

• Open distributed systems can be constructed from heterogeneous hardware and software, 

possibly from different vendors. But the conformance of each component to the published 

standard must be carefully tested and verified if the system is to work correctly. 

Security 

Many of the information resources that are made available and maintained in distributed systems 

have a high intrinsic value to their users. Their security is therefore of considerable importance. 

Security for information resources has three components: confidentiality (protection against 

disclosure to unauthorized individuals), integrity(protection against alteration or corruption), and 

availability (protection against interference with the means to access the resources). 

In a distributed system, clients send requests to access data managed by servers, which involves 

sending information in messages over a network. For example: 

1. A doctor might request access to hospital patient data or send additions to that data. 

2. In electronic commerce and banking, users send their credit card numbers across the Internet. 

In both examples, the challenge is to send sensitive information in a message over a network in a 

secure manner. But security is not just a matter of concealing the contents of messages – it also 

involves knowing for sure the identity of the user or other agent on whose behalf a message was 

sent.However, the following two security challenges have not yet been fully met: 

Denial of service attacks: Another security problem is that a user may wish to disrupt a service  
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for some reason. This can be achieved by bombarding the service with such a large number of 

pointless requests that the serious users are unable to use it. This is called a denial of service 

attack. There have been several denial of service attacks on well-known web services. Currently 

such attacks are countered by attempting to catch and punish the perpetrators after the event, but 

that is not a general solution to the problem. 

Security of mobile code: Mobile code needs to be handled with care. Consider someone who 

receives an executable program as an electronic mail attachment: the possible effects of running 

the program are unpredictable; for example, it may seem to display an interesting picture but in 

reality it may access local resources, or perhaps be part of a denial of service attack. 

Scalability 

Distributed systems operate effectively and efficiently at many different scales, ranging from a 

small intranet to the Internet. A system is described as scalable if it will remain effective when 

there is a significant increase in the number of resources and the number of users. The number of 

computers and servers in the Internet has increased dramatically. Figure 1.6 shows the increasing 

number of computers and web servers during the 12-year history of the Web up to 2005 

[zakon.org]. It is interesting to note the significant growth in both computers and web servers in 

this period, but also that the relative percentage is flattening out – a trend that is explained by the 

growth of fixed and mobile personal computing. One web server may also increasingly be hosted 

on multiple computers. 

The design of scalable distributed systems presents the following challenges: 

Controlling the cost of physical resources: As the demand for a resource grows, it should be 

possible to extend the system, at reasonable cost, to meet it. For example, the frequency with 

which files are accessed in an intranet is likely to grow as the number of users and computers 

increases. It must be possible to add server computers to avoid the performance bottleneck that 

would arise if a single file server had to handle all file access requests. In general, for a system 

with n users to be scalable, the quantity of physical resources required to support them should be 

at most O(n) – that is, proportional to n. For example, if a single file server can support 20 users, 

then two such servers should be able to support 40 users. 

Controlling the performance loss: Consider the management of a set of data whose size is 

proportional to the number of users or resources in the system – for example, the table with the 

correspondence between the domain names of computers and their Internet addresses held by the 

Domain Name System, which is used mainly to look 

up DNS names such as www.amazon.com. Algorithms that use hierarchic structures scale better  

http://www.amazon.com/
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than those that use linear structures. But even with hierarchic structures an increase in size will 

result in some loss in performance: the time taken to access hierarchically structured data is  

O(log n), where n is the size of the set of data. For a 

system to be scalable, the maximum performance loss should be no worse than this. 

Preventing software resources running out: An example of lack of scalability is shown by the 

numbers used as Internet (IP) addresses (computer addresses in the Internet). In the late 1970s, it 

was decided to use 32 bits for this purpose, but as will be explained in Chapter 3, the supply of 

available Internet addresses is running out. For this reason, a new version of the protocol with 

128-bit Internet addresses is being adopted, and this will require modifications to many software 

components. 

 

Avoiding performance bottlenecks: In general, algorithms should be decentralized to avoid 

having performance bottlenecks. We illustrate this point with reference to the predecessor of the 

Domain Name System, in which the name table was kept in a single master file that could be 

downloaded to any computers that needed it. That was 

fine when there were only a few hundred computers in the Internet, but it soon became a serious 

performance and administrative bottleneck. 

Failure handling 

Computer systems sometimes fail. When faults occur in hardware or software, programs may 

produce incorrect results or may stop before they have completed the intended computation. 

Failures in a distributed system are partial – that is, some components fail while others continue 

to function. Therefore the handling of failures is particularly difficult. 

Detecting failures: Some failures can be detected. For example, checksums can be used to detect 

corrupted data in a message or a file. It is difficult or even impossible to detect some other 
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failures, such as a remote crashed server in the Internet. The challenge is to manage in the  

presence of failures that cannot be detected but may be suspected. 

Masking failures: Some failures that have been detected can be hidden or made less severe. Two 

examples of hiding failures: 

1. Messages can be retransmitted when they fail to arrive. 

2. File data can be written to a pair of disks so that if one is corrupted, the other may still be 

correct. 

Tolerating failures: Most of the services in the Internet do exhibit failures – it would not be 

practical for them to attempt to detect and hide all of the failures that might occur in such a large 

network with so many components. Their clients can be designed to tolerate failures, which 

generally involves the users tolerating them as well. For example, when a web browser cannot 

contact a web server, it does not make the user wait for ever while it keeps on trying – it informs 

the user about the problem, leaving them free to try again later. Services that tolerate failures are 

discussed in the paragraph on redundancy below. 

Recovery from failures: Recovery involves the design of software so that the state of permanent 

data can be recovered or ‘rolled back’ after a server has crashed. In general, the computations 

performed by some programs will be incomplete when a fault occurs, and the permanent data  

that they update (files and other material stored 

in permanent storage) may not be in a consistent state. 

Redundancy: Services can be made to tolerate failures by the use of redundant components. 

Consider the following examples: 

1. There should always be at least two different routes between any two routers in the Internet. 

2. In the Domain Name System, every name table is replicated in at least two different servers. 

3. A database may be replicated in several servers to ensure that the data remains accessible after 

the failure of any single server; the servers can be designed to detect faults in their peers; when a 

fault is detected in one server, clients are redirected to the remaining servers. 

Concurrency 

Both services and applications provide resources that can be shared by clients in a distributed 

system. There is therefore a possibility that several clients will attempt to access a shared 

resource at the same time. For example, a data structure that records bids for an auction may be 

accessed very frequently when it gets close to the deadline time. The process that manages a 

shared resource could take one client request at a time. But that approach limits throughput.  
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Therefore services and applications generally allow multiple client requests to be processed  

concurrently. To make this more concrete, suppose that each resource is encapsulated as an  

object and that invocations are executed in concurrent threads. In this case it is possible that 

several threads may be executing concurrently within an object, in which case their operations on 

the object may conflict with one another and produce inconsistent results. 

Transparency 

Transparency is defined as the concealment from the user and the application programmer of the 

separation of components in a distributed system, so that the system is perceived as a whole 

rather than as a collection of independent components. The implications of transparency are a 

major influence on the design of the system software. 

Access transparency enables local and remote resources to be accessed using identical 

operations. 

Location transparency enables resources to be accessed without knowledge of their physical or 

network location (for example, which building or IP address). 

Concurrency transparency enables several processes to operate concurrently using shared 

resources without interference between them. 

Replication transparency enables multiple instances of resources to be used to increase reliability 

and performance without knowledge of the replicas by users or application programmers. 

Failure transparency enables the concealment of faults, allowing users and application programs 

to complete their tasks despite the failure of hardware or software components. 

Mobility transparency allows the movement of resources and clients within a system without 

affecting the operation of users or programs. 

Performance transparency allows the system to be reconfigured to improve performance as 

loads vary. 

Scaling transparency allows the system and applications to expand in scale without change to the 

system structure or the application algorithms. 

Quality of service 

Once users are provided with the functionality that they require of a service, such as the file 

service in a distributed system, we can go on to ask about the quality of the service provided. The 

main nonfunctional properties of systems that affect the quality of the service experienced by 

clients and users are reliability, security and performance. 

Adaptability to meet changing system configurations and resource availability has been 

recognized as a further important aspect of service quality. 
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Some applications, including multimedia applications, handle time-critical data – streams of data  

that are required to be processed or transferred from one process to another at a fixed rate. For 

example, a movie service might consist of a client program that is retrieving a film from a video  

server and presenting it on the user’s screen. For a satisfactory result the successive frames of 

video need to be displayed to the user within some specified time limits. 

In fact, the abbreviation QoS has effectively been commandeered to refer to the ability of 

systems to meet such deadlines. Its achievement depends upon the availability of the necessary  

computing and network resources at the appropriate times. This implies a requirement for the 

system to provide guaranteed computing and communication resources that are sufficient to 

enable applications to complete each task on time (for example, the task of displaying a frame of 

video). 

INTRODUCTION TO SYSTEM MODELS 

Systems that are intended for use in real-world environments should be designed to function 

correctly in the widest possible range of circumstances and in the face of many possible 

difficulties and threats . 

Each type of model is intended to provide an abstract, simplified but consistent description of a 

relevant aspect of distributed system design: 

Physical models are the most explicit way in which to describe a system; they capture the 

hardware composition of a system in terms of the computers (and other devices, such as mobile 

phones) and their interconnecting networks. 

Architectural models describe a system in terms of the computational and communication tasks 

performed by its computational elements; the computational elements being individual 

computers or aggregates of them supported by appropriate network interconnections. 

Fundamental models take an abstract perspective in order to examine individual aspects of a 

distributed system. The fundamental models that examine three important aspects of distributed 

systems: interaction models, which consider the structure and sequencing of the communication 

between the elements of the system; failure models, which consider the ways in which a system 

may fail to operate correctly and; security models, which consider how the system is protected 

against attempts to interfere with its correct operation or to steal its data. 

Architectural models 

The architecture of a system is its structure in terms of separately specified components and their 

interrelationships. The overall goal is to ensure that the structure will meet present and likely 

future demands on it. Major concerns are to make the system reliable, manageable, adaptable and  
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cost-effective. The architectural design of a building has similar aspects – it determines not only 

its appearance but also its general structure and architectural style (gothic, neo-classical, modern) 

and provides a consistent frame of reference for the design. 

Software layers 

The concept of layering is a familiar one and is closely related to abstraction. In a layered 

approach, a complex system is partitioned into a number of layers, with a given layer making use 

of the services offered by the layer below. A given layer therefore offers a software abstraction,  

with higher layers being unaware of implementation details, or indeed of any other layers beneath 

them. 

In terms of distributed systems, this equates to a vertical organization of services into service 

layers. A distributed service can be provided by one or more server processes, interacting with 

each other and with client processes in order to maintain a consistent system-wide view of the 

service’s resources. For example, a network time service is implemented on the Internet based on 

the Network Time Protocol (NTP) by server processes running on hosts throughout the Internet 

that supply the current time to any client that requests it and adjust their version of the current 

time as a result of interactions with each other. Given the complexity of distributed systems, it is 

often helpful to organize such services into layers. the important terms platform and middleware, 

which define as follows: 

The important terms platform and middleware, which is defined as follows: 

A platform for distributed systems and applications consists of the lowest-level hardware and 

software layers. These low-level layers provide services to the layers above them, which are 

implemented independently in each computer,  bringing the system’s programming  interface up 

to a level that facilitates communication and coordination between processes. Intel x86/Windows, 

Intel x86/Solaris, Intel x86/Mac OS X, Intel x86/Linux and ARM/Symbian are major examples. 

– Remote Procedure Calls – Client programs call procedures in server programs 

– Remote Method Invocation – Objects invoke methods of objects on distributed hosts 

– Event-based Programming Model – Objects receive notice of events in other objects in which 

they have interest 

Middleware 

• Middleware: software that allows a level of programming beyond processes and message 

passing 

– Uses protocols based on messages between processes to provide its higher-level abstractions  



  

 

Distributed Systems                                                                                                                                                    Page 16 
 

Applications, services 

Middleware 

Operating system 

Computer and networkhardware 

 

– such as remote invocation and events 

 

– Supports location transparency 

– Usually uses an interface definition language (IDL) to define interfaces 

 

Interfaces in Programming Languages 

– Current PL allow programs to be developed as a set of modules that communicate with each 

other. Permitted interact ions between modules are defined by interfaces 

– A specified interface can be implemented by different modules without the need to modify 

other modules using the interface 

• Interfaces in Distributed Systems 

– When modules are in different processes or on different hosts there are limitations on the 

interactions that can occur. Only actions with parameters that are fully specified and understood can 

communicate effectively to request or provide services to modules in another process. 

– A service interface allows a client to request and a server to provide particular services 

– A remote interface allows objects to be passed as arguments to and results from distributed 

modules. 
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• Object Interfaces 

– An interface defines the signatures of a set of methods, including arguments, argument types,  

 

return values and exceptions. Implementation details are not included in an interface. 

A class may implement an interface by specifying behavior for each method in the interface. 

Interfaces do not have constructors. 

System architectures 

Client-server: This is the architecture that is most often cited when distributed systems are 

discussed. It is historically the most important and remains the most widely employed. Figure 2.3 

illustrates the simple structure in which processes take on the roles of being clients or servers. In  

particular, client processes interact with individual server processes in potentially separate host 

computers in order to access the shared resources that they manage. 

Servers may in turn be clients of other servers, as the figure indicates. For example, a web server 

is often a client of a local file server that manages the files in which the web pages are stored. 

Web servers and most other Internet services are clients of the DNS service, which translates 

Internet domain names to network addresses. 

Clients invoke individual servers 

 

Another web-related example concerns search engines, which enable users to look up summaries 

of information available on web pages at sites throughout the Internet. These summaries are 

made by programs called web crawlers, which run in the background at a search engine site  

using HTTP requests to access web servers throughout the Internet. Thus a search engine is both 

a server and a client: it responds to queries from browser clients and it runs web crawlers that act 

as clients of other web servers. In this example, the server tasks (responding to user queries) and 

the crawler tasks (making requests to other web servers) are entirely independent; there is little 
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need to synchronize them and they may run concurrently. In fact, a typical search engine would 

normally include many concurrent threads of execution, some serving its clients and others 

running web crawlers. In Exercise 2.5, the reader is invited to consider the only synchronization 

issue that does arise for a concurrent search engine of the type outlined here. 

 

 

Peer-to-peer: In this architecture all of the processes involved in a task or activity play similar 

roles, interacting cooperatively as peers without any distinction between client and server 

processes or the computers on which they run. In practical terms, all participating processes run 

the same program and offer the same set of interfaces to each 

other. While the client-server model offers a direct and relatively simple approach to the sharing 

of data and other resources, it scales poorly. 

A distributed application based on peer processes 

Peer 2 

 

Peer 1 
Application 

Application 

 

Shara 

ble 

obje 

cts 

Peer 3 

 

Applicat 

ion 
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A number of placement strategies have evolved in response to this problem, but none of them 

addresses the fundamental issue – the need to distribute shared resources much more widely in 

order to share the computing and communication loads incurred in accessing them amongst a 

much larger number of computers and network links. The key insight that led to the development 

of peer-to-peer systems is that the network and computing resources owned by the users of a 

service could also be put to use to support that service. This has the useful consequence that the 

resources available to run the service grow with the number of users. 

Models of systems share some fundamental properties. In particular, all of them are composed of 

processes that communicate with one another by sending messages over a computer network. All 

of the models share the design requirements of achieving the performance and reliability 

characteristics of processes and networks and ensuring the security of the resources in the 

system. 

About their characteristics and the failures and security risks they might exhibit. In general, such 

a fundamental model should contain only the essential ingredients that need to consider in order 

to understand and reason about some aspects of a system’s behaviour. The purpose of such a 

model is: 

• To make explicit all the relevant assumptions about the systems we are modelling. 

• To make generalizations concerning what is possible or impossible, given those assumptions. 

The generalizations may take the form of general-purpose algorithms or desirable properties that 

are guaranteed. The guarantees are 

dependent on logical analysis and, where appropriate, mathematical proof. 

The aspects of distributed systems that we wish to capture in our fundamental models are 

intended to help us to discuss and reason about: 

Interaction: Computation occurs within processes; the processes interact by passing messages, 

resulting in communication (information flow) and coordination (synchronization and ordering 

of activities) between processes. In the analysis and design of distributed systems we are 

concerned especially with these interactions. The interaction model must reflect the facts that 

communication takes place with delays that are often of considerable duration, and that the 

accuracy with which independent processes can be coordinated is limited by these delays and by 

the difficulty of maintaining the same notion of time across all the computers in a distributed 

system. 
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Failure: The correct operation of a distributed system is threatened whenever a fault occurs in 

any of the computers on which it runs (including software faults) or in the network that connects 

them. Our model defines and classifies the faults. This provides a basis for the analysis of their 

potential effects and for the design of systems that are able to tolerate faults of each type while 

continuing to run correctly. 

Security: The modular nature of distributed systems and their openness exposes them to attack 

by both external and internal agents. Our security model defines and classifies the forms that 

such attacks may take, providing a basis for the analysis of threats to a system and for the design 

of systems that are able to resist them. 

        Fundamental Models 

Interaction model 

Fundamentally distributed systems are composed of many processes, interacting in complex 

ways. For example: 

• Multiple server processes may cooperate with one another to provide a service; the 

examples mentioned above were the Domain Name System, which partitions and 

replicates its data at servers throughout the Internet, and Sun’s Network Information 

Service, which keeps replicated copies of password files at several servers in a local area 

network. 

• A set of peer processes may cooperate with one another to achieve a common goal: for 

example, a voice conferencing system that distributes streams of audio data in a similar 

manner, but with strict real-time constraints. 

Most programmers will be familiar with the concept of an algorithm – a sequence of 

steps to be taken in order to perform a desired computation. Simple programs are controlled by 

algorithms in which the steps are strictly sequential. The behaviour of the program and the state 

of the program’s variables is determined by them. Such a program is executed as a  single 

process. Distributed systems composed of multiple processes such as those outlined above are 

more complex. Their behaviour and state can be described by a distributed algorithm – a 

definition of the steps to be taken by each of the processes of which the system is composed, 

including the transmission of messages between them. Messages are transmitted between 

processes to transfer information between them and to coordinate their activity. 

Two significant factors affecting interacting processes in a distributed system: 
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• Communication performance is often a limiting characteristic. 

• It is impossible to maintain a single global notion of time. 

Performance of communication channels • The communication channels in our model are 

realized in a variety of ways in distributed systems – for example, by an implementation of 

streams or by simple message passing over a computer network. Communication over a 

computer network has the following performance characteristics relating to latency, bandwidth 

and jitter: 

The delay between the start of a message’s transmission from one process and the beginning of 

its receipt by another is referred to as latency. The latency includes: 

– The time taken for the first of a string of bits transmitted through a network to reach its 

destination. For example, the latency for the transmission of a message through a satellite link is 

the time for a radio signal to travel to the satellite and back. 

– The delay in accessing the network, which increases significantly when the network is heavily 

loaded. For example, for Ethernet transmission the sending station waits for the network to be 

free of traffic. 

– The time taken by the operating system communication services at both the sending and the 

receiving processes, which varies according to the current load on the operating systems. 

• The bandwidth of a computer network is the total amount of information that can be 

transmitted over it in a given time. When a large number of communication channels are using 

the same network, they have to share the available bandwidth. 

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is relevant to 

multimedia data. For example, if consecutive samples of audio data are played with differing 

time intervals, the sound will be badly distorted. 

Computer clocks and timing events • Each computer in a distributed system has its own 

internal clock, which can be used by local processes to obtain the value of the current time. 

Therefore two processes running on different computers can each associate timestamps with their 

events. However, even if the two processes read their clocks at the same time, their local clocks 

may supply different time values. This is because computer clocks drift from perfect time and, 

more importantly, their drift rates differ from one another. The term clock drift rate refers to the 

rate at which a computer clock deviates from a perfect reference clock. Even if the clocks on all 

the computers in a distributed system are set to the same time initially, their clocks will 
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eventually vary quite significantly unless corrections are applied. 

Two variants of the interaction model • In a distributed system it is hard to set limits on the 

time that can be taken for process execution, message delivery or clock drift. Two opposing 

extreme positions provide a pair of simple models – the first has a strong assumption of time and 

the second makes no assumptions about time: 

Synchronous distributed systems: Hadzilacos and Toueg define a synchronous distributed system 

to be one in which the following bounds are defined: 

• The time to execute each step of a process has known lower and upper bounds. 

• Each message transmitted over a channel is received within a known bounded time. 

• Each process has a local clock whose drift rate from real time has a known bound. 

Asynchronous distributed systems: Many distributed systems, such as the Internet, are very 

useful without being able to qualify as synchronous systems. Therefore we need an alternative 

model. An asynchronous distributed system is one in which there are no bounds on: 

• Process execution speeds – for example, one process step may take only a picosecond and 

another a century; all that can be said is that each step may take an arbitrarily long time. 

• Message transmission delays – for example, one message from process A to process B may be 

delivered in negligible time and another may take several years. In other words, a message may 

be received after an arbitrarily long time. 

• Clock drift rates – again, the drift rate of a clock is arbitrary. 

ordering • In many cases, we are interested in knowing whether an event (sending or receiving a 

message) at one process occurred before, after or concurrently with another event at another 

process. The execution of a system can be described in terms of events and their ordering despite 

the lack of accurate clocks. For example, consider the following set of exchanges between a 

group of email users, X, Y, Z and A, on a mailing list: 

1. User X sends a message with the subject Meeting. 

2. Users Y and Z reply by sending a message with the subject Re: Meeting. 

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s 

message and Y’s reply and sends another reply, which references both X’s and Y’s 

messages. But due to the independent delays in message delivery, the messages may be delivered 

as shown in the following figure and some users may view these two messages in the wrong 

order. 
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Failure model 

In a distributed system both processes and communication channels may fail – that is, they may 

depart from what is considered to be correct or desirable behaviour. The failure  model defines 

the ways in which failure may occur in order to provide an understanding of the effects of 

failures. Hadzilacos and Toueg provide a taxonomy that distinguishes between the failures of 

processes and communication channels. These are presented under the headings omission 

failures, arbitrary failures and timing failures. 

Omission failures • The faults classified as omission failures refer to cases when a process or 

communication channel fails to perform actions that it is supposed to do. 

Process omission failures: The chief omission failure of a process is to crash. When, say that a 

process has crashed we mean that it has halted and will not execute any further steps of its 

program ever. The design of services that can survive in the presence of faults can be simplified 

if it can be assumed that the services on which they depend crash cleanly – that is, their  

processes either function correctly or else stop. Other processes may be able to detect such a 

crash by the fact that the process repeatedly fails to respond to invocation messages. However, 

this method of crash detection relies on the use of timeouts – that is, a method in which one 

process allows a fixed period of time forsomething to occur. In an asynchronous system a 

timeout can indicate only that a process is not responding – it may have crashed or may be slow, 

or the messages may not have arrived. 

Communication omission failures: Consider the communication primitives send and receive. A 

process p performs a send by inserting the message m in its outgoing message buffer. The 

communication channel transports m to q’s incoming message buffer. Process q performs a 

receive by taking m from its incoming message buffer and delivering it. The outgoing and 

incoming message buffers are typically provided by the operating system. 

 

 

processp process q 

 

Outgoingmessagebuffer Incomingmessagebuffer 

 

Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst 

 

 

Communication channel 
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possible failure semantics, in which any type of error may occur. For example, a process may set 

wrong values in its data items, or it may return a wrong value in response to an invocation. 

An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps or 

takes unintended processing steps. Arbitrary failures in processes cannot be detected by seeing 

whether the process responds to invocations, because it might arbitrarily omit to reply. 

Communication channels can suffer from arbitrary failures; for example, message contents may 

be corrupted, nonexistent messages may be delivered or real messages may be delivered more 

than once. Arbitrary failures of communication channels are rare because the communication 

software is able to recognize them and reject the faulty 

messages. For example, checksums are used to detect corrupted messages, and message 

sequence numbers can be used to detect nonexistent and duplicated messages. 

 

 

Timing failures • Timing failures are applicable in synchronous distributed systems where time 

limits are set on process execution time, message delivery time and clock drift rate. Timing 

failures are listed in the following figure. Any one of these failures may result in responses being 

unavailable to clients within a specified time interval. 

In an asynchronous distributed system, an overloaded server may respond too slowly, but we 

cannot say that it has a timing failure since no guarantee has been offered. Real-time operating 

systems are designed with a view to providing timing guarantees, but they are more complex to 

design and may require redundant hardware. 

Most general-purpose operating systems such as UNIX do not have to meet real-time constraints. 

 

Masking failures • Each component in a distributed system is generally constructed from a 

collection of other components. It is possible to construct reliable services from components that 



  

 

Distributed Systems                                                                                                                                                    Page 26 
 

exhibit failures. For example, multiple servers that hold replicas of data can continue to provide a 

service when one of them crashes. A knowledge of the failure characteristics of a component can 

enable a new service to be designed to mask the failure of the components on which it depends. 

A service masks a failure either by hiding it altogether or by converting it into a more acceptable 

type of failure. For an example of the latter, checksums are used to mask corrupted messages, 

effectively converting an arbitrary failure into an omission failure. The omission failures can be 

hidden by using a protocol that retransmits messages that do not arrive at their destination. Even 

process crashes may be masked, by replacing the process and restoring its memory from 

information stored on disk by its predecessor. 

 

Reliability of one-to-one communication • Although a basic communication channel can 

exhibit the omission failures described above, it is possible to use it to build a communication 

service that masks some of those failures. 

The term reliable communication is defined in terms of validity and integrity as follows: 

Validity: Any message in the outgoing message buffer is eventually delivered to the incoming 

message buffer. 

Integrity: The message received is identical to one sent, and no messages are delivered twice. 

The threats to integrity come from two independent sources: 

• Any protocol that retransmits messages but does not reject a message that arrives twice. 

Protocols can attach sequence numbers to messages so as to detect those that are delivered twice. 

• Malicious users that may inject spurious messages, replay old messages or tamper with 

messages. Security measures can be taken to maintain the integrity property in the face of such 

attacks. 

Security model 

The sharing of resources as a motivating factor for distributed systems, and in Section 2.3 we 

described their architecture in terms of processes, potentially encapsulating higher-level 

abstractions such as objects, components or services, and providing access to them through 

interactions with other processes. That architectural model provides the basis for our security 

model: 

the security of a distributed system can be achieved by securing the processes and the channels 
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used for their interactions and by protecting the objects that they encapsulate against 

unauthorized access. 

Protection is described in terms of objects, although the concepts apply equally well to resources 

of all types 

Protecting objects : 

Server that manages a collection of objects on behalf of some users. The users can run client 

programs that send invocations to the server to perform operations on the objects. The server 

carries out the operation specified in each invocation and sends the result to the client. 

Objects are intended to be used in different ways by different users. For example, some objects 

may hold a user’s private data, such as their mailbox, and other objects may hold shared data 

such as web pages. To support this, access rights specify who is allowed to perform the 

operations of an object – for example, who is allowed to read or to write its state. 

 

Principal (user) Network Principal (server) 

 

 

Securing processes and their interactions • Processes interact by sending messages. The 

messages are exposed to attack because the network and the communication service that they use 

are open, to enable any pair of processes to interact. Servers and peer processes expose their 

interfaces, enabling invocations to be sent to them by any other process. 

The enemy • To model security threats, we postulate an enemy (sometimes also known as the 

adversary) that is capable of sending any message to any process and reading or copying any 

message sent between a pair of processes, as shown in the following figure. Such attacks can be 

made simply by using a computer connected to a network to run a program that reads network 

messages addressed to other computers on the network, or a program that generates messages 

that make false requests to services, purporting to come from authorized users. The attack may  

Access rights Object 

invocation 

Client 

result Server 
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come from a computer that is legitimately connected to the network or from one that is  

connected in an unauthorized manner. The threats from a potential enemy include threats to 

processes and threats to communication channels. 

Defeating security threats 

Cryptography and shared secrets: Suppose that a pair of processes (for example, a particular 

client and a particular server) share a secret; that is, they both know the secret but no other 

process in the distributed system knows it. Then if a message exchanged by that pair of processes 

includes information that proves the sender’s knowledge of the 

shared secret, the recipient knows for sure that the sender was the other process in the pair. Of 

course, care must be taken to ensure that the shared secret is not revealed to an enemy. 

Cryptography is the science of keeping messages secure, and encryption is the process of 

scrambling a message in such a way as to hide its contents. Modern cryptography is based on 

encryption algorithms that use secret keys – large numbers that are difficult to guess – to 

transform data in a manner that can only be reversed with knowledge of the corresponding 

decryption key. 

Authentication: The use of shared secrets and encryption provides the basis for the 

authentication of messages – proving the identities supplied by their senders. The basic 

authentication technique is to include in a message an encrypted portion that contains enough of 

the contents of the message to guarantee its authenticity. The authentication portion of a request 

to a file server to read part of a file, for example, might include a representation of the requesting 

principal’s identity, the identity of the file and the date and time of the request, all encrypted with 

a secret key shared between the file server and the requesting process. The server would decrypt 

this and check that it corresponds to the unencrypted details specified in the request. 

Secure channels: Encryption and authentication are used to build secure channels as a service 

layer on top of existing communication services. A secure channel is a communication channel 

connecting a pair of processes, each of which acts on behalf of a principal, as shown in the 

following figure. A secure channel has the following properties: 

• Each of the processes knows reliably the identity of the principal on whose behalf the other 

process is executing. Therefore if a client and server communicate via a secure channel, the 

server knows the identity of the principal behind the invocations and can check their access 

rights before performing an operation. This enables the server to protect its objects correctly and 

allows the client to be sure that it is receiving results from a bona fide server. 

• A secure channel ensures the privacy and integrity (protection against tampering) of the data 

transmitted across it. 
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• Each message includes a physical or logical timestamp to prevent messages from being 

replayed or reordered. 

Communication aspects of middleware, although the principles discussed are more widely applicable. This one is 

concerned with the design of the components shown in the darker layer in the following figure. 
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UNIT II 

 
Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing physical clocks, 

Logical time and Logical clocks, Global states,. 

Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast 

Communication, Consensus and Related problems. 

 

CLOCKS, EVENTS AND PROCESS STATES 

Each process executes on a single processor, and the processors do not share memory (Chapter 6 

briefly considered the case of processes that share memory). Each process pi in has a state si that, in 

general, it transforms as it executes. The process’s state includes the values of all the variables within 

it. Its state may also include the values of any objects in its local operating system environment that it 

affects, such as files. We assume that processes cannot communicate with one another in any way 

except by sending messages through the network. 

So, for example, if the processes operate robot arms connected to their respective nodes in the 

system, then they are not allowed to communicate by shaking one another’s robot hands! As each 

process pi executes it takes a series of actions, each of which is either amessage send or receive 

operation, or an operation that transforms pi ’s state – one that changes one or more of the values in 

si. In practice, we may choose to use a high-leveldescription of the actions, according to the 

application. For example, if the processes in are engaged in an eCommerce application, then the 

actions may be ones such as ‘client dispatched order message’ or ‘merchant server recorded 

transaction to log’. We define an event to be the occurrence of a single action that a process carries 

out as it executes – a communication action or a state-transforming action. The sequence of events 

within a single process pi can be placed in a single, total ordering, which we denote by the relation i 

between the events. That is, if and only if the event e occurs before e at pi . This ordering is well 

defined, whether or not the process is multithreaded, since we have assumed that the process executes 

on a single processor. Now we can define the history of process pi to be the series of events that take 

place within it, ordered as we have described by the relation  

Clocks • We have seen how to order the events at a process, but not how to timestamp them – i.e., to 

assign to them a date and time of day. Computers each contain their own physical clocks. These 

clocks are electronic devices that count oscillations occurring in a crystal at a definite frequency, and 

typically divide this count and store the result in a counter register. Clock devices can be programmed 
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to generate interrupts at regular intervals in order that, for example, timeslicing can be implemented;  

however, we shall not concern ourselves with this aspect of clock operation. 

The operating system reads the node’s hardware clock value, Hit , scales it and adds an offset so as 

 to produce a software clock Cit = Hit + that approximately measures real, physical time t for process pi 

. In other words, when the real time in an absolute frame of reference is t, Cit is the reading on the 

software clock. For example, Cit could be the 64-bit value of the number of nanoseconds that 

have elapsed at time t since a convenient reference time. In general, the clock is not completely 

accurate, so Cit will differ from t. Nonetheless, if Ci behaves sufficiently well (we shall examine 

the notion of clock correctness shortly), we can use its value to timestamp any event at pi . Note 

that successive events will correspond to different timestamps only if the clock resolution – the 

period between updates of the clock value – is smaller than the time interval between successive 

events. The rate at which events occur depends on such factors as the length of the processor 

instruction cycle. 

Clock skew and clock drift • Computer clocks, like any others, tend not to be in perfect agreement 

 

Coordinated Universal Time • Computer clocks can be synchronized to external sources of highly 

accurate time. The most accurate physical clocks use atomic oscillators, whose drift rate is about one 

part in 1013. The output of these atomic clocks is used as the standard second has been defined as 

9,192,631,770 periods of transition between the two hyperfine levels of the ground state of Caesium-

133 (Cs133). Seconds and years and other time units that we use are rooted in astronomical time. 

They were originally defined in terms of the rotation of the Earth on its axis and its rotation about the 

Sun. However, the period of the Earth’s rotation about its axis is gradually getting longer, primarily 

because of tidal friction; atmospheric effects and convection currents within the Earth’s core also 

cause short-term increases and decreases in the period. So astronomical time and atomic time have a 

tendency to get out of step. 

Coordinated Universal Time – abbreviated as UTC (from the French equivalent) – is an international 

standard for timekeeping. It is based on atomic time, but a so-called ‘leap second’ is inserted – or, 

more rarely, deleted – occasionally to keep it in step with astronomical time. UTC signals are 

synchronized and broadcast regularly from landbased 

radio stations and satellites covering many parts of the world. For example, in the USA, the radio 

station WWV broadcasts time signals on several shortwave frequencies. 

Satellite sources include the Global Positioning System (GPS).Receivers are available commercially. 

Compared with ‘perfect’ UTC, the signals received from land-based stations have an accuracy on the 

order of 0.1–10 milliseconds,depending on the station used. Signals received from GPS satellites are 
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accurate to about 1 microsecond. Computers with receivers attached can synchronize their clocks 

with these timing signals. 

Synchronizing physical clocks 

In order to know at what time of day events occur at the processes in our distributed system – for 

example, for accountancy purposes – it is necessary to synchronize the processes’ clocks, Ci , with an 

authoritative, external source of time. This is external synchronization. And if the clocks Ci are 

synchronized with one another to a known degree of accuracy, then we can measure the interval 

between two events occurring at different computers by appealing to their local clocks, even though 

they are not necessarily synchronized to an external source of time. This is internal 

synchronization.We define these two modes of synchronization more closely as follows, over an 

interval of real time I: 

External synchronization: For a synchronization bound D  0 , and for a source S of UTC time, St – Cit 

< D, for i = 1 2N and for all real times t in I. Another way of saying this is that the clocks Ci are 

accurate to within the bound D. 

Internal synchronization: For a synchronization bound D 0 , Cit – Cjt D for i j = 1 2N , and for all  

real times t in I. Another way of saying this is that he clocks Ci agree within the bound D. Clocks that 

are internally synchronized are not necessarily externally synchronized, since they may drift 

collectively from an external source of time even though they agree with one another. However, it 

follows from the definitions that if the system is externally synchronized with a bound D then the 

same system is internally synchronized with a bound of 2D. Various notions of correctness for clocks 

have been suggested. It is common to define a hardware clock H to be correct 

if its drift rate falls within a known bound (a value derived from one supplied by the manufacturer, 

such as 10–6 seconds/second). 

This means that the error in measuring the interval between real times t and t ( t t ) is bounded: 

1 – t – t Ht – Ht 1 + t – t 

This condition forbids jumps in the value of hardware clocks (during normal operation). Sometimes 

we also require our software clocks to obey the condition but a weaker condition of monotonicity may 

suffice. Monotonicity is the condition that a clock C only ever advances: t t Ct Ct For example, the 

UNIX make facility is a tool that is used to compile only those source files that have been modified  

since they were last compiled. The modification dates of each corresponding pair of source and object 

files are compared to determine this condition. If a computer whose clock was running fast set its 

clock back after compiling a source file but before the file was changed, the source file might appear  
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to have been modified prior to the compilation. Erroneously, make will not recompile the source file. 

We can achieve monotonicity despite the fact that a clock is found to be running fast. We need only 

change the rate at which updates are made to the time as given to applications. This can be achieved 

in software without changing the rate at which the underlying hardware clock ticks – recall that Cit = 

Hit + , where we are free to choose the values of and . A hybrid correctness condition that is sometimes applied 

is to require that a clock obeys the monotonicity condition, and that its drift rate is bounded between 

synchronization points, but to allow the clock value to jump ahead at synchronization points. 

A clock that does not keep to whatever correctness conditions apply is defined to be faulty. A clock’s 

crash failure is said to occur when the clock stops ticking altogether;any other clock failure is an arbitrary 

failure. A historical example of an arbitrary failure is that of a clock with the ‘Y2K bug’, which broke the 

monotonicity condition by registering the date after 31 December 1999 as 1 January 1900 instead of 2000; 

another example is a clock whose batteries are very low and whose drift rate suddenly becomes very large. 

Note that clocks do not have to be accurate to be correct, according to the definitions. Since the goal 

may be internal rather than external synchronization, the criteria for correctness are only concerned 

with the proper functioning of the clock’s ‘mechanism’, not its absolute setting. We now describe 

algorithms for external synchronization and for internal synchronization. 

Logical time and logical clocks 

From the point of view of any single process, events are ordered uniquely by times shown on the  

local clock. However, as Lamport [1978] pointed out, since we cannot synchronize clocks perfectly 

across a distributed system, we cannot in general use physical time to find out the order of any 

arbitrary pair of events occurring within it. In general, we can use a scheme that is similar to physical 

causality but that applies in distributed systems to order some of the events that occur at different 

processes. This ordering is based on two simple and intuitively obvious points: • If two events 

occurred at the same process pi i = 1 2 N , then they occurred in the order in which pi observes them 

– this is the order i that we defined above.• Whenever a message is sent between processes, the event 

of sending the message occurred before the event of receiving the message. 

Lamport called the partial ordering obtained by generalizing these two relationships the 

happened-before relation. It is also sometimes known as the relation of causal ordering or potential 

causal ordering. 

We can define the happened-before relation, denoted by , as follows: HB1: If processpi : e i e', then e 

e . 

HB2: For any message m, send(m) receive(m) – where send(m) is the event of sending the message, 

and receive(m)s the event of receiving it. HB3: If e, e and e are events such that e e and e e , then e e . 



  

 

Distributed Systems                                                                                                                                                    Page 34 
 

Totally ordered logical clocks • Some pairs of distinct events, generated by different processes, have 

numerically identical Lamport timestamps. However, we can create a total order on the set of events 

– that is, one for which all pairs of distinct events are ordered – by taking into account the identifiers 

of the processes at which events occur. If e is an event occurring at pi with local timestamp Ti , and e 

is an event occurring at pj with local timestamp Tj , we define the global logical timestamps for these 

events to be Ti i and Tj j , respectively. And we define Ti i Tj j if and only if either Ti Tj , or Ti = Tj 

and i j . This ordering has no general physical significance 

(because process identiiers are arbitrary), but it is sometimes useful. Lamport used it, for example, to 

order the entry of processes to a critical section. 

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome the 

shortcoming of Lamport’s clocks: the fact that from Le Le we cannot conclude that e e. 

. A vector clock for a system of N processes is an array of N 

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local events. Like 

Lamport timestamps, processes piggyback vector timestamps on the messages they send to one 

another, and there are simple rules for updating the clocks: 

VC1: Initially, Vij = 0 , for i j = 1 2 N . 

VC2: Just before pi timestamps an event, it sets Vii :=Vii + 1. VC3: 

pi includes the value t = Vi in every message it sends. 

VC4: When pi receives a timestamp t in a message, it sets Vij := maxVij tj , for j = 1 2 N . Taking the 

componentwise maximum of two vector timestamps in this way is known as a merge operation.For a 

vector clock Vi , Vii is the number of events that pi has timestamped, and Vij j i is the number of 

events that have occurred at pj that have potentially affected pi . (Process pj may have timestamped 

more events by this point, but no information has flowed to pi about them in messages as yet.) 

Clocks, Events and Process States 

• A distributed system consists of a collection P of N processes pi, i = 1,2,… NEach process pi 

has a state si consisting of its variables (which it transforms as it executes) 

Processes communicate only by messages (via a network) 

• Actions of processes: Send, Receive, change own state 

• Event: the occurrence of a single action that a process carries out as it executes 

– Events at a single process pi, can be placed in a total ordering denoted by the relation →i 

between the events. i.e.e →i e’ if and only if event e occurs before event e’ at process pi 

• A history of process pi: is a series of events ordered by →i 

– history(pi) = hi =<ei0, ei1, ei2, …> 
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clocks 

To timestamp events, use the computer‘s clock • At real time, t, the OS reads the time on the 

computer‘s hardware clock Hi(t) 

• It calculates the time on its software clock Ci(t)=αHi(t) + β 

– e.g. a 64 bit value giving nanoseconds since some base time 

– Clock resolution: period between updates of the clock value 

• In general, the clock is not completely accurate – but if Ci behaves well enough, it can be used 

to timestamp events at pi 

Skew between computer clocks in a distributed system 

 

 

Computer clocks are not generally in perfect agreement 

• Clock skew: the difference between the times on two clocks (at any instant) 

• Computer clocks use crystal-based clocks that are subject to physical variations 

– Clock drift: they count time at different rates and so diverge (frequencies of oscillation differ) 

– Clock drift rate: the difference per unit of time from some ideal reference clock 

– Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec). 

– High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec 

Coordinated Universal Time (UTC) 

• UTC is an international standard for time keeping 

– It is based on atomic time, but occasionally adjusted to astronomical time 

– International Atomic Time is based on very accurate physical clocks (drift rate 10-13) 

• It is broadcast from radio stations on land and satellite (e.g.GPS) 

• Computers with receivers can synchronize their clocks with these timing signals (by requesting  

• time from GPS/UTC source) 

– Signals from land-based stations are accurate to about 0.1-10 millisecond 

– Signals from GPS are accurate to about 1 microsecond 
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Synchronizing physical clocks 

Two models of synchronization 

• External synchronization: a computer‘s clock Ci is synchronized with an external authoritative 

time source S, so that: 

– |S(t) - Ci(t)| < D for i = 1, 2, …N over an interval, I of realtime 

– The clocks Ci are accurate to within the bound D. 

• Internal synchronization: the clocks of a pair of computers are synchronized with one another 

so that: 

– | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval, I of realtime 

– The clocks Ci and Cj agree within the bound D. 

Internally synchronized clocks are not necessarily externally synchronized, as they may drift 

collectively 

– if the set of processes P is synchronized externally within a bound D, it is also internally 

synchronized within bound 2D (worst case polarity) 

Clock correctness 

• Correct clock: a hardware clock H is said to be correct if its drift rate is within a bound ρ > 0 

(e.g. 10-6 secs/ sec) 

This means that the error in measuring the interval between real times t and 

t’ is bounded: 

– (1 - ρ ) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + ρ ) (t’ - t) (where t’>t) Which forbids jumps in time 

readings of hardware clocks 

– Clock monotonicity: weaker condition of correctness – t' > t ⇒ C(t’) > C(t) e.g. required by Unix 

make 

– A hardware clock that runs fast can achieve monotonicity by adjusting the values of α and β 

such that Ci(t)= αHi(t) + β 

– Faulty clock: a clock not keeping its correctness condition crash failure - a clock stops ticking 

• arbitrary failure - any other failure e.g. jumps in time; Y2Kbug 

Synchronization in a synchronous system 

A synchronous distributed system is one in which the following bounds are defined 

he time to execute each step of a process has known lower and upper bounds each message 

transmitted over a channel is received within a knownbounded time (min and max) each process has a 

local clock whose drift rate from real time has a known bound 
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Internal synchronization in a synchronous system 

➢ One process p1 sends its local time t to process p2 in a message m 

➢ p2 could set its clock to t + Ttrans where Ttrans is the time to transmit m 

➢ Ttrans is unknown but min ≤ Ttrans ≤ max 

➢ uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2 

Cristian‘s method for an asynchronous system 

➢ A time server S receives signals from a UTC source 

➢ Process p requests time in mr and receives t in mt from S 

➢ p sets its clock to t + Tround/2 

➢ Accuracy ± (Tround/2 - min) : 

➢ because the earliest time S puts t in message mt is min after p sent mr 

➢ the latest time was min before mt arrived at p 

➢ the time by S‘s clock when mt arrives is in the range [t+min, t + Tround - min] 

➢ the width of the range is Tround + 2min 
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The Berkeley algorithm 

 

➢ Problem with Cristian‘s algorithm 

➢ a single time server might fail, so they suggest the use of a 

group of synchronized servers 

➢ it does not deal with faulty servers 

➢ Berkeley algorithm (also 1989) 

➢ An algorithm for internal synchronization of a group of computers 

➢ A master polls to collect clock values from the others (slaves) 

➢ The master uses round trip times to estimate the slaves‘ clock values 

➢ It takes an average (eliminating any above some average round trip 

time or with faulty clocks) 

➢ It sends the required adjustment to the slaves (better than sending 

the time which depends on the round trip time) 

➢ Measurements 

➢ 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5 

➢ If master fails, can elect a new master to take over (not in bounded time) 

Network Time Protocol (NTP) 

➢ A time service for the Internet - synchronizes clients to UTC Reliability from redundant paths, 

scalable, authenticates time sources Architecture 

➢ Primary servers are connected to UTC sources 

➢ Secondary servers are synchronized to primary servers 

➢ Synchronization subnet - lowest level servers in users‘ computers 

➢ strata: the hierarchy level 
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NTP - synchronization of servers 

➢ The synchronization subnet can reconfigure if failuresoccur 

➢ a primary that loses its UTC source can become a secondary 

➢ a secondary that loses its primary can use another primary 

➢ Modes of synchronization for NTP servers: 

➢ Multicast 

➢ A server within a high speed LAN multicasts time to others which 

set clocks assuming some delay (not veryaccurate) 

➢ Procedure call 

➢ A server accepts requests from other computers (like 

Cristian‘s algorithm) 

➢ Higher accuracy. Useful if no hardware multicast. 

Messages exchanged between a pair of NTP peers 

➢ All modes use UDP 

➢ Each message bears timestamps of recent events: 

➢ Local times of Send and Receive of previous message 

➢ Local times of Send of current message 

➢ Recipient notes the time of receipt Ti ( we have Ti-3, Ti-2, Ti-1, Ti) 

➢ Estimations of clock offset and message delay 

➢ For each pair of messages between two servers, NTP estimates an offset oi (between the 

two clocks) and a delay di (total time for the two messages, which take t and t‘) 

➢ Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t‘ - o 

➢ This gives us (by adding the equations) : di = t + t‘ = Ti-2 - Ti-3 + Ti - Ti-1 

➢ Also (by subtracting the equations) 

= oi + (t‘ - t )/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti )/2 

➢ Using the fact that t, t‘>0 it can be shown that 

➢ oi - di /2 ≤ o ≤ oi + di /2 . 

➢ Thus oi is an estimate of the offset and di is a measure of the accuracy 

➢ Data filtering 

➢ NTP servers filter pairs <oi, di>, estimating reliability from variation (dispersions), 

allowing them to select peers; and synchronization based on the lowest dispersion or min 
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di ok 

➢ A relatively high filter dispersion represents relatively unreliable data 

➢ Accuracy of tens of milliseconds over Internet paths (1 ms on LANs) 

Logical time and logical clocks 

➢ Instead of synchronizing clocks, event ordering can be used 

➢ If two events occurred at the same process pi (i = 1, 2, … N) then theyoccurred in the 

order observed by pi, that is order →i 

➢ when a message, m is sent between two processes, send(m) happened before receive(m) 

➢ Lamport[1978] generalized these two relationships into the happened-before relation: 

e →i e' 

➢ HB1: if e →i e' in process pi, then e → e' 

➢ HB2: for any message m, send(m) → receive(m) 

➢ HB3: if e → e' and e' → e'', then e → e'' 

 

Lamport‘s logical clocks 

➢ Each process pi has a logical clock Li 

o a monotonically increasing software counter 

o not related to a physical clock 

➢ Apply Lamport timestamps to events with happened-before relation 

o LC1: Li is incremented by 1 before each event at process pi 
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o LC2: 

o when process pi sends message m, it piggybacks t = Li 

o when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before 

timestamping the event receive (m) 

➢ e →e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply e→e‘ 

 

Totally ordered logical clocks 

➢ Some pairs of distinct events, generated by different processes, may have numerically 

identical Lamport timestamps 

➢ Different processes may have same Lamport time 

➢ Totally ordered logical clocks 

➢ If e is an event occurring at pi with local timestamp Ti, and if e‘ is an event occurring at pj 

with local timestamp Tj 

➢ Define global logical timestamps for the events to be (Ti, i ) and (Tj, j) 

➢ Define (Ti, i ) < (Tj, j ) iff 

➢ Ti < Tj or 

➢ Ti = Tj and i < j 

➢ No general physical significance since process identifiers are arbitrary 

Vector clocks 

➢ Shortcoming of Lamport clocks: 

➢ L(e) < L(e') doesn't imply e → e' 

➢ Vector clock: an array of N integers for a system of N processes 

➢ Each process keeps its own vector clock Vi to timestamp local events 

➢ Piggyback vector timestamps on messages 
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➢ Rules for updating vector clocks: 

➢ Vi[i]] is the number of events that pi has timestamped 

➢ Viji] ( j≠ i) is the number of events at pj that pi has been affected 

by VC1: Initially, Vi[ j ] := 0 for pi, j=1.. N (N processes) 

➢ VC2: before pi timestamps an event, Vi[ i ] := Vi[ 

i ]+1 VC3: pi piggybacks t = Vi on every message 

it sends 

➢ VC4: when pi receives a timestamp t, it sets Vi[ j ] := max(Vi[ j ] , t[ j ]) for 

➢ j=1..N (merge operation) 

 

➢ Compare vector timestamps 

➢ V=V‘ iff V[j] = V‘[j] for j=1..N 

➢ V>=V‘ iff V[j] <= V‘[j] for j=1..N 

➢ V<V‘ iff V<= V‘ ^ V!=V‘ 

➢ Figure 11.7 shows 

➢ a→f since V(a) < V(f) 

➢ c || e since neither V(c) <= V(e) nor V(e) <= V(c) 

Global states 

➢ How do we find out if a particular property is true in a distributed system? For examples, 

we will look at: 

➢ Distributed Garbage Collection 

➢ Deadlock Detection 

➢ Termination Detection 

➢ Debugging 
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Distributed Garbage Collection 

➢ Objects are identified as garbage when there are no longer any references to them in the 

system 

➢ Garbage collection reclaims memory used by thoseobjects 

➢ In figure 11.8a, process p2 has two objects that do not have any references to other objects, 

but one object does have a reference to a message in transit. It is not garbage, but the other 

p2 object is 

➢ Thus we must consider communication channels as well as object references to 

determine unreferenced objects 

 

Deadlock Detection 

➢ A distributed deadlock occurs when each of a collection of processes waits for another 

process to send it a message, and there is a cycle in the graph of the waits-for relationship 
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➢ In figure 11.8b, both p1 and p2 wait for a message from the other, so both are blocked and 

the system cannot continue 

Coordination And Agreement 

Introduction 

➢ Fundamental issue: for a set of processes, how to coordinate their actions or to agree on 

one or more values? 

➢ even no fixed master-slave relationship between the components 

➢ Further issue: how to consider and deal with failures when designing algorithms 

➢ Topics covered 

➢ mutual exclusion 

➢ how to elect one of a collection of processes to perform a special role 

➢ multicast communication 

➢ agreement problem: consensus and byzantine agreement 

Failure Assumptions and Failure Detectors 

➢ Failure assumptions of this chapter 

➢ Reliable communication channels 

➢ Processes only fail by crashing unless state otherwise 

➢ Failure detector: object/code in a process that detects failures of other processes 

➢ unreliable failure detector 

➢ One of two values: unsuspected or suspected 

➢ Evidence of possible failures 

➢ Example: most practical systems 

➢ Each process sends ―alive/I‘m here‖ message to everyone else 

➢ If not receiving ―alive‖ message after timeout, it‘s suspected 

➢ maybe function correctly, but network partitioned 

➢ reliable failure detector 

➢ One of two accurate values: unsuspected or failure – few practical systems 
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12.2 Distributed Mutual Exclusion 

➢ Process coordination in a multitasking OS 

➢ Race condition: several processes access and manipulate the same data concurrently  

and the outcome of the execution depends on the particular order in which the access 

take place 

➢ critical section: when one process is executing in a critical section, no other process is 

to be allowed to execute in its critical section 

➢ Mutual exclusion: If a process is executing in its critical section, then no other processes 

can be executing in their critical sections 

➢ Distributed mutual exclusion 

➢ Provide critical region in a distributed environment 

➢ message passing 

➢ for example, locking files, locked daemon in UNIX (NFS is stateless, no file-locking at 

the NFS level) 

Algorithms for mutual exclusion 

➢ Problem: an asynchronous system of N processes 

➢ processes don't fail 

➢ message delivery is reliable; not share variables 

➢ only one critical region 

➢ application-level protocol: enter(), resourceAccesses(), exit() 

➢ Requirements for mutual exclusion 

➢ Essential 

➢ [ME1] safety: only one process at a time 

➢ [ME2] liveness: eventually enter or exit 

➢ Additional 

➢ [ME3] happened-before ordering: ordering of enter() is the same as HB ordering 

➢ Performance evaluation 

➢ overhead and bandwidth consumption: # of messages sent 

➢ client delay incurred by a process at entry and exit 

➢ throughput measured by synchronization delay: delay between one's exit and next's 

entry 

A central server algorithm 

➢ server keeps track of a token---permission to enter critical region 
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➢ a process requests the server for the token 

➢ the server grants the token if it has the token 

➢ a process can enter if it gets the token, otherwise waits when done, a  

➢ process sends release and exits 

 

 

 

A central server algorithm: discussion 

➢ Properties 

➢ safety, why? 

➢ liveness, why? 

➢ HB ordering not guaranteed, why? 

➢ Performance 

➢ enter overhead: two messages (request and grant) 

➢ enter delay: time between request and grant 

➢ exit overhead: one message (release) 

➢ exit delay: none 

➢ synchronization delay: between release and grant 

➢ centralized server is the bottleneck 

A ring-based algorithm 

➢ Arrange processes in a logical ring to rotate a token 

➢ Wait for the token if it requires to enter the critical section 

➢ The ring could be unrelated to the physical configuration 

➢ pi sends messages to p(i+1) mod N 

➢ when a process requires to enter the critical section, waits for the token 

➢ when a process holds the token 

➢ If it requires to enter the critical section, it can enter 



  

 

Distributed Systems                                                                                                                                                    Page 47 
 

 

➢ when a process releases a token (exit), it sends to its neighbor 

➢ If it doesn‘t, just immediately forwards the token to its neighbor 

 

 

An algorithm using multicast and logical clocks 

➢ Multicast a request message for the token (Ricart and Agrawala [1981]) 

➢ enter only if all the other processes reply 

➢ totally-ordered timestamps: <T, pi > 

➢ Each process keeps a state: RELEASED, HELD, WANTED 

➢ if all have state = RELEASED, all reply, a process can hold the token and enter 

➢ if a process has state = HELD, doesn't reply until it exits 

➢ if more than one process has state = WANTED, process with the lowest timestamp will get 

all 
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An algorithm using multicast: discussion 

➢ •Properties 

➢ safety, why? 

➢ liveness, why? 

➢ HB ordering, why? 

➢ Performance 

➢ bandwidth consumption: no token keeps circulating 

➢ entry overhead: 2(N-1), why? [with multicast support: 1 + (N -1) = N] 

➢ entry delay: delay between request and getting all replies 

➢ exit overhead: 0 to N-1 messages 

➢ exit delay: none 

➢ synchronization delay: delay for 1 message (one last reply from the previous holder) 

Maekawa‘s voting algorithm 

➢ •Observation: not all peers to grant it access 
➢ Only obtain permission from subsets, overlapped by any two processes 

➢ •Maekawa‘s approach 

➢ subsets Vi,Vj for process Pi, Pj 

➢ Pi ∈ Vi, Pj ∈ Vj 

➢ Vi ∩ Vj ≠ ∅ , there is at least one common member 
➢ subset |Vi|=K, to be fair, each process should have the same size 

➢ Pi cannot enter the critical section until it has received all K reply messages 
➢ Choose a subset 
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➢ Simple way (2√N): place processes in a √N by √N matrix and let Vi be the union of the 
row and column containing Pi 

➢ If P1, P2 and P3 concurrently request entry to the critical section, then its possible that 

each process has received one (itself) out of two replies, and none can proceed 

➢ adapted and solved by [Saunders 1987] 

 

 

Elections 

 

Election: choosing a unique process for a particular role 
➢ All the processes agree on the unique choice 

➢ For example, server in dist. Mutex assumptions 

➢ Each process can call only one election at a time multiple concurrent elections can be called 
by different processes 

➢ Participant: engages in an election each process pi has variable electedi = ? (don't know) 

initially process with the largest identifier wins. 

➢ The (unique) identifier could be any useful value Properties 

➢ [E1]  electedi  of  a  ―participant‖  process  must  be  P  (elected  process=largestid)  or  ⊥ 
(undefined) 

➢ [E2]   liveness:   all   processes  participate  and   eventually  set   electedi !=  ⊥ (or crash) 

Performance 

➢ overhead (bandwidth consumption): # of messages 

➢ turnaround time: # of messages to complete an election 

 

A ring-based election algorithm 

➢ Arrange processes in a logical ring 

o pi sends messages to p(i+1) mod N 

o It could be unrelated to the physical configuration 

o Elect the coordinator with the largest id 
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o Assume no failures 

➢ Initially, every process is a non-participant. Any process can call an election 

o Marks itself as participant 

o Places its id in an election message 

o Sends the message to its neighbor 
o Receiving an election message 

➢ if id > myid, forward the msg, mark participant 
➢ if id < myid 

o non-participant: replace id with myid: forward the msg, mark participant 

o participant: stop forwarding (why? Later, multiple elections) 
➢ if id = myid, coordinator found, mark non-participant, electedi := id, send elected 

o message with myid 

o Receiving an elected message 
➢ id != myid, mark non-participant, electedi := id forward the msg 
➢ if id = myid, stop forwarding 

 

Figure 12.7 A ring-based election in progress 

 

➢ Receiving an election message: 

➢ if id > myid, forward the msg, mark participant 

➢ if id < myid 

➢ non-participant: replace id with myid: forward the msg, mark participant 

➢ participant: stop forwarding (why? Later, multiple elections) 

➢ if id = myid, coordinator found, mark non-participant, electedi := id, send elected message 

with 

➢ myid 

➢ Receiving an elected message: – id != myid, mark non-participant, 

➢ electedi := id forward the msg 

➢ if id = myid, stop forwarding 

A ring-based election algorithm: discussion 

➢ •Properties 
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➢ safety: only the process with the largest id can send an elected message 

➢ liveness: every process in the ring eventually participates in the election; extra 

elections are stopped 

➢ Performance 

➢ one election, best case, when? 

➢ N election messages 

➢ N elected messages 

➢ turnaround: 2N messages 

➢ one election, worst case, when? 

➢ 2N - 1 election messages 

➢ N elected messages 

➢ turnaround: 3N - 1 messages 

➢ can't tolerate failures, not very practical 

The bully election algorithm 

• Assumption 

– Each process knows which processes have higher identifiers, and that it can communicate with 

all such processes 

• Compare with ring-based election 

– Processes can crash and be detected by timeouts 

• synchronous 

• timeout T = 2Ttransmitting (max transmission delay) + Tprocessing (max processing delay) 

• Three types of messages 

– Election: announce an election 

– Answer: in response to Election 

– Coordinator: announce the identity of the elected process 

The bully election algorithm: how to 

• Start an election when detect the coordinator has failed or begin to replace the coordinator, 

which has lower identifier 

– Send an election message to all processes with higher id's and waits for answers (except the 

failed coordinator/process) 

• If no answers in time T 

– Considers it is the coordinator 
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– sends coordinator message (with its id) to all processes with lower id's 

• else 

– waits for a coordinator message and starts an election if T‘ timeout 

– To be a coordinator, it has to start an election 

• A higher id process can replace the current coordinator (hence ―bully‖) 

– The highest one directly sends a coordinator message to all process with lower identifiers 

• Receiving an election message 

– sends an answer message back 

– starts an election if it hasn't started one—send election messages to all higher-id processes 

(including the ―failed‖ coordinator—the coordinator might be up by now) 

• Receiving a coordinator message 

– set electedi to the new coordinator 

 
 

The bully election algorithm: discussion 

➢ Properties 

➢ safety: 

➢ a lower-id process always yields to a higher-id process 

➢ However, it‘s guaranteed 

➢ if processes that have crashed are replaced by processes with the same identifier since 

message delivery order might not be guaranteed and 

➢ failure detection might be unreliable 

➢ liveness: all processes participate and know the coordinator at the end 

➢ Performance 
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➢ best case: when? 

➢ overhead: N-2 coordinator messages 

➢ turnaround delay: no election/answer messages 

Multicast Communication 

➢ Group (multicast) communication: for each of a group of processes to receive copies 

of the messages sent to the group, often with deliveryguarantees 

➢ The set of messages that every process of the group should receive 

➢ On the delivery ordering across the group members 

➢ Challenges 

➢ Efficiency concerns include minimizing overhead activities and increasing throughput 

and bandwidth utilization 

➢ Delivery guarantees ensure that operations are completed 

➢ Types of group 

➢ Static or dynamic: whether joining or leaving is considered Closed or open 

➢ A group is said to be closed if only members of the group can multicast to it. Reliable 

Multicast 

➢ Simple basic multicasting (B-multicast) is sending a message to every process that is a 

member of a defined group 

➢ B-multicast (g, m) for each process p ∈ group g, send (p, message m) 

➢ On receive (m) at p: B-deliver (m) at p 

➢ Reliable multicasting (R-multicast) requires these properties 

➢ Integrity: a correct process sends a message to only a member of the group 

➢ Validity: if a correct process sends a message, it will eventually bedelivered 

➢ Agreement: if a message is delivered to a correct process, all other correct processes 

in the group will deliver it 
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Types of message ordering 

Three types of message ordering 

– FIFO (First-in, first-out) ordering: if a correct process delivers a message before another, 

every correct process will deliver the first message before the other 

– Casual ordering: any correct process that delivers the second message will deliver the previous 

message first 

– Total ordering: if a correct process delivers a message before another, any other correct 

process that delivers the second message will deliver the first message first 

• Note that 

– FIFO ordering and casual ordering are only partial orders 

– Not all messages are sent by the same sending process 

– Some multicasts are concurrent, not able to be ordered by happened before 

– Total order demands consistency, but not a particular order 

Figure 12.12 Total, FIFO and causal ordering of multicast messages 
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Notice 

➢ the consistent ordering of totally ordered messages T1 and T2, 

➢ the FIFO-related messages F1 and F2 and 

➢ the causally related messages C1 and C3 and 

➢ the otherwise arbitrary delivery ordering of messages 

 

Note that T1 and T2 are delivered in opposite order to the physical time of message creation 

Bulletin board example (FIFO ordering) 

• A bulletin board such as Web Board at NJIT illustrates the desirability of consistency and FIFO 

ordering. A user can best refer to preceding messages if they are delivered in order. Message 25 

in Figure 12.13 refers to message 24, and message 27 refers to message 23. 

• Note the further advantage that Web Board allows by permitting messages to begin threads by 

replying to a particular message. Thus messages do not have to be displayed in the same order 

they are delivered 
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Implementing total ordering 

• The normal approach to total ordering is to assign totally ordered identifiers to multicast 

messages, using the identifiers to make ordering decisions. 

• One possible implementation is to use a sequencer process to assign identifiers. See Figure 

12.14. A drawback of this is that the sequencer can become a bottleneck. 

• An alternative is to have the processes collectively agree on identifiers. A simple algorithm is 

shown in Figure 12.15. 

 

Figure 12.15 The ISIS algorithm for total ordering 
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Each process q in group g keeps 

• Aq g: the largest agreed sequence number it has observed so far for the group g 

• Pq g: its own largest proposed sequence number 

Algorithm for process p to multicast a message m to group g 

1. B-multicasts <m, i> to g, where i is a unique identifier for m 

2. Each process q replies to the sender p with a proposal for the message‘s agreed sequence 

number of Pq g :=Max(Aq g, Pq g)+1 

3. Collects all the proposed sequence numbers and selects the largest one a as the next agreed 

sequence number. It then B-multicasts <i, a> to g. 

4. Each process q in g sets Aq g := Max(Aq g, a) and attaches a to the message identified by i 

Implementing casual ordering 

• Causal ordering using vector timestamps (Figure 12.16) 

– Only orders multicasts, and ignores one-to-one messages between processes 

– Each process updates its vector timestamp before delivering a message to maintain the count of 

precedent messages 
 

 

Consensus and related problems 

• Problems of agreement 

– For processes to agree on a value (consensus) after one or more of the processes has proposed 

what that value should be 

– Covered topics: byzantine generals, interactive consistency, totally ordered multicast 

• The byzantine generals problem: a decision whether multiple armies should attack or retreat, 

assuming that united action will be more successful than some attacking and some retreating 

• Another example might be space ship controllers deciding whether to proceed or abort. Failure 

handling during consensus is a key concern 
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• Assumptions 

– communication (by message passing) is reliable 

– processes may fail 

• Sometimes up to f of the N processes are faulty 

Consensus Process 

1. Each process pi begins in an undecided state and proposes a single value vi, drawn from a set 

D (i=1…N) 

2. Processes communicate with each other, exchanging values 

3. Each process then sets the value of a decision variable di and enters the decided state 

 

 
Requirements for Consensus 

• Three requirements of a consensus algorithm 

– Termination: Eventually every correct process sets its decision variable 

– Agreement: The decision value of all correct processes is the same: if pi and pj are correct and 

have entered the decided state, then di=dj 

(i,j=1,2, …, N) 

– Integrity: If the correct processes all proposed the same value, then any correct process in the 

decided state has chosen that value 

The byzantine generals problem 

• Problem description 

– Three or more generals must agree to attack or to retreat 

– One general, the commander, issues the order 

– Other generals, the lieutenants, must decide to attack or retreat 
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– One or more generals may be treacherous 

• A treacherous general tells one general to attack and another to retreat 

• Difference from consensus is that a single process supplies the value to agree on 

• Requirements 

– Termination: eventually each correct process sets its decision variable 

– Agreement: the decision variable of all correct processes is the same 

– Integrity: if the commander is correct, then all correct processes agree on the value that the 

commander has proposed (but the commander need not be correct) 

The interactive consistency problem 

• Interactive consistency: all correct processes agree on a vector of values, one for each process. 

This is called the decision vector 

– Another variant of consensus 

• Requirements 

– Termination: eventually each correct process sets its decision variable 

– Agreement: the decision vector of all correct processes is the same 

– Integrity: if any process is correct, then all correct processes decide the correct value for that 

process 
 

Relating consensus to other problems 

• Consensus (C), Byzantine Generals (BG), and Interactive Consensus (IC) are all problems 

concerned with making decisions in the context of arbitrary or crash failures 

• We can sometimes generate solutions for one problem in terms of another. For example 

– We can derive IC from BG by running BG N times, once for each process with that process 

acting as commander 

– We can derive C from IC by running IC to produce a vector of values at each process, then  

– applying a function to the vector‘s values to derive a single value. 

– We can derive BG from C by 

• Commander sends proposed value to itself and each remaining process 

• All processes run C with received values 

• They derive BG from the vector of C values 

Consensus in a Synchronous System 

• Up to f processes may have crash failures, all failures occurring during f+1 rounds. 

During each round, each of the correct processes multicasts the values among themselves 

• The algorithm guarantees all surviving correct processes are in a position to agree 
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• Note: any process with f failures will require at least f+1 rounds to agree 

Limits for solutions to Byzantine Generals 

 

• Some cases of the Byzantine Generals problems have no solutions 

– Lamport et al found that if there are only 3 processes, there is no solution 

– Pease et al found that if the total number of processes is less than three times the number of 

failures plus one, there is no solution 

• Thus there is a solution with 4 processes and 1 failure, if there are two rounds 

– In the first, the commander sends the values 

– while in the second, each lieutenant sends the values it received 
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Figure 12.20 Four Byzantine generals 
 
 

 
Asynchronous Systems 

• All solutions to consistency and Byzantine generals problems are limited to synchronous 

systems 

• Fischer et al found that there are no solutions in an asynchronous system with even one failure 

• This impossibility is circumvented by masking faults or using failuredetection 

• There is also a partial solution, assuming an adversary process, based on introducing random 

values in the process to prevent an effective thwarting strategy. This does not always reach 

consensus 
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UNIT III 

 
Inter Process Communication: Introduction, characteristics of interprocess communication, External 

Data Representation and Marshalling, Client-Server Communication, Group Communication, Case 

Study: IPC in UNIX. 

Distributed Objects and Remote Invocation: Introduction, Communication between Distributed 

Objects, Remote Procedure Call, Events and Notifications, Case study-Java RMI. 

The characteristics of interprocess communication 

Message passing between a pair of processes can be supported by two message communication 

operations, send and receive, defined in terms of destinations and messages. To communicate, 

one process sends a message (a sequence of bytes) to a destination and another process at the 

destination receives the message. This activity involves the communication of data from the 

sending process to the receiving process and may involve the synchronization of the two 

processes. 

Synchronous and asynchronous communication • A queue is associated with each message 

destination. Sending processes cause messages to be added to remote queues and receiving 

processes remove messages from local queues. Communication between the sending and 

receiving processes may be either synchronous or asynchronous. In the synchronous form of 

communication, the sending and receiving processes synchronize at every message. In this 

case,both send and receive are blocking operations. Whenever a send is issued the sending 

process (or thread) is blocked until the corresponding receive is issued. Whenever a receive is 

issued by a process (or thread), it blocks until a message arrives. 

 
In the asynchronous form of communication, the use of the send operation is nonblocking in that 

the sending process is allowed to proceed as soon as the message has been copied to a local 

buffer, and the transmission of the message proceeds in parallel with the sending process. The 

receive operation can have blocking and non-blocking variants. In the non-blocking variant, the 

receiving process proceeds with its program after issuing a receive operation, which provides a 

buffer to be filled in the background, but it must separately receive notification that its buffer has 

been filled, by polling or interrupt. 

In a system environment such as Java, which supports multiple threads in a single process, the 

blocking receive has no disadvantages, for it can be issued by one thread while other threads in 
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the process remain active, and the simplicity of synchronizing the receiving threads with the 

incoming message is a substantial advantage. Non-blocking communication appears to be more 

efficient, but it involves extra complexity in the receiving process associated with the need to 

acquire the incoming message out of its flow of control. For these reasons, today’s systems do 

not generally provide the nonblocking form of receive. 

Message destinations • Chapter 3 explains that in the Internet protocols, messages are sent to 

(Internet address, local port) pairs. A local port is a message destination within a computer, 

specified as an integer. A port has exactly one receiver but can have many senders. Processes 

may use multiple ports to receive messages. Any process that knows the number of a port can 

send a message to it. Servers generally publicize their port numbers for use by clients. 

Reliability • As far as the validity property is concerned, a point-to-point  message service can  

be described as reliable if messages are guaranteed to be delivered despite a ‘reasonable’ number 

of packets being dropped or lost. In contrast, a point-to-point message service can be described  

as unreliable if messages are not guaranteed to be delivered in the face of even a single packet 

dropped or lost. For integrity, messages must arrive uncorrupted and without duplication. 

Ordering • Some applications require that messages be delivered in sender order – that is, the 

order in which they were transmitted by the sender. The delivery of messages out of sender order 

is regarded as a failure by such applications. 

Sockets 

Both forms of communication (UDP and TCP) use the socket abstraction, which provides an 

endpoint for ommunication between processes. Sockets originate from BSD UNIX but are also 

present in most other versions of UNIX, including Linux as well as Windows and the Macintosh 

OS. Interprocess communication consists of transmitting a message between a socket in one 

process and a socket in another process, is shown in the following figure. 
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For a process to receive messages, its socket must be bound to a local port and one of the  

Internet addresses of the computer on which it runs. Messages sent to a particular Internet 

address and port number can be received only bya process whose socket is associated with that 

Internet address and port number. Processes may use the same socket for sending and receiving 

messages. Each computer has a large number(216) of possible port numbers for use by local 

processes for receiving messages. Any processmay make use of multiple ports to receive 

messages, but a process cannot share ports with other processes on the same computer. However, 

any number of processes may send messages to the same port. Each socket is associated with a 

particular protocol – either UDP or TCP. 

Java API for Internet addresses • As the IP packets underlying UDP and TCP are sent to 

Internet addresses, Java provides a class, InetAddress, that represents Internet addresses. Users of 

this class refer to computers by Domain Name System (DNS) hostnames. For example, instances 

of InetAddress that contain Internet addresses can be created by calling a static method of 

InetAddress, giving a DNS hostname as the argument. The method uses the DNS to get the 

corresponding Internet address. For example, to get an object representing the Internet address of 

the host whose DNS name is bruno.dcs.qmul.ac.uk, use: 

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk"); 

This method can throw an UnknownHostException. Note that the user of the class does not need 

to state the explicit value of an Internet address. In fact, the class encapsulates the details of the 

representation of Internet addresses. Thus the interface for this class is not dependent on the 

number of bytes needed to represent Internet addresses – 4 bytes in IPv4 and 16 bytes in IPv6. 

UDP datagram communication 

A datagram sent by UDP is transmitted from a sending process to a receiving process without 

acknowledgement or retries. If a failure occurs, the message may not arrive. A datagram is 

transmitted between processes when one process sends it and another receives it. To send or 

receive messages a process must first create a socket bound to an 

Internet address of the local host and a local port. A server will bind its socket to a server port – 

one that it makes known to clients so that they can send messages to it. A client binds its socket  

to any free local port. The receive method returns the Internet address and port of the sender, in 

addition to the message, allowing the recipient to send a reply. 

The following are some issues relating to datagram communication: 
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Message size: The receiving process needs to specify an array of bytes of a particular size in 

which to receive a message. If the message is too big for the array, it is truncated on arrival. The 

underlying IP protocol allows packet lengths of up to 216 bytes, which includes the headers as 

well as the message. However, most environments impose a size restriction of 8 kilobytes. Any 

application requiring messages larger than the maximum must fragment them into chunks of that 

size. 

Generally, an application, for example DNS, will decide on a size that is not excessively large 

but is adequate for its intended use. 

Blocking: Sockets normally provide non-blocking sends and blocking receives for datagram 

communication (a non-blocking receive is an option in some implementations). The send 

operation returns when it has handed the message to the underlying UDP and IP protocols, which 

are responsible for transmitting it to its destination. On arrival, the message is placed in a queue 

for the socket that is bound to the destination port. The message can be collected from the queue 

by an outstanding or future invocation of receive on that socket. Messages are discarded at the 

destination if no process already has a socket bound to the destination port. 

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting to receive 

requests from its clients. But in some programs, it is not appropriate that a process that has 

invoked a receive operation should wait indefinitely in situations where the sending process may 

have crashed or the expected message may have been lost. To allow for such requirements, 

timeouts can be set on sockets. Choosing an appropriate timeout interval is difficult, but it should 

be fairly large in comparison with the time required to transmit a message. 

Receive from any: The receive method does not specify an origin for messages. Instead, an 

invocation of receive gets a message addressed to its socket from any origin. The receive method 

returns the Internet address and local port of the sender, allowing the recipient to check where  

the message came from. It is possible to connect a datagram socket to a particular remote port 

and Internet address, in which case the socket is only able to send messages to and receive 

messages from that address. 

Failure model for UDP datagrams • A failure model for communication channels and defines 

reliable communication in terms of two properties: integrity and validity. The integrity property 

requires that messages should not be corrupted or duplicated. The use of a checksum ensures that 

there is a negligible probability that any message received is corrupted. UDP datagrams suffer 
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from the following failures: 

Omission failures: Messages may be dropped occasionally, either because of a checksum error or 

because no buffer space is available at the source or destination. To simplify the discussion, we 

regard send-omission and receive-omission failures as omission failures in the communication 

channel. 

Ordering: Messages can sometimes be delivered out of sender order. Applications using UDPdatagrams  

are left to provide their own checks to achieve the quality of reliable communication they require. 

 A reliable delivery service may be constructed from one that suffers from omission failures by the use 

 of acknowledgements. 

Use of UDP • For some applications, it is acceptable to use a service that is liable to occasional 

omission failures. For example, the Domain Name System, which looks up DNS names in the 

Internet, is implemented over UDP. Voice over IP (VOIP) also runs over UDP. UDP datagrams 

are sometimes an attractive choice because they do notsuffer from the overheads associated with 

guaranteed message delivery. There are three main sources of overhead: 

• the need to store state information at the source and destination; 

• the transmission of extra messages; 

• latency for the sender. 

Java API for UDP datagrams • The Java API provides datagram communication by means of 

two classes: DatagramPacket and DatagramSocket. DatagramPacket: 

This class provides a constructor that makes an instance out of an array of bytes comprising a 

message, the length of the message and the Internet address and local port number of the 

destination socket, as follows: 

Datagram packet 

array of bytes containing message length of message Internet address port number 

An instance of DatagramPacket may be transmitted between processes when one process sends 

it and another receives it.UDP server repeatedly receives a  request and send s it back to the client 
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DatagramSocket: This class supports sockets for sending and receiving UDP datagrams. It 

provides a constructor that takes a port number as its argument, for use by processes that need to 

use a particular port. It also provides a no-argument constructor that allows the system to choose 

a free local port. These constructors can throw a SocketException if the chosen port is already in 

use or if a reserved port (a number below 1024) is specified when running over UNIX. 

UDP server repeatedly receives a request  and sends it back to the client 
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TCP stream communication 

The API to the TCP protocol, which originates from BSD 4.x UNIX, provides the abstraction of 

a stream of bytes to which data may be written and from which data may be read. The following 

characteristics of the network are hidden by the stream abstraction: 

Message sizes: The application can choose how much data it writes to a stream or reads from it. 

It may deal in very small or very large sets of data. The underlying implementation of a TCP 

stream decides how much data to collect before transmitting it as one or more IP packets. On 

arrival, the data is handed to the application as requested. Applications can, if necessary, force 

data to be sent immediately. 

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example of a simple 

scheme (which is not used in TCP), the sending end keeps a record of each IP packet sent and the 

receiving end acknowledges all the arrivals. If the sender does not receive an acknowledgement 

within a timeout, it retransmits the message. The more sophisticated sliding window scheme 

[Comer 2006] cuts down on the number of acknowledgement messages required. 

Flow control: The TCP protocol attempts to match the speeds of the processes that read from and 

write to a stream. If the writer is too fast for the reader, then it is blocked until the reader has 

consumed sufficient data. 
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Message duplication and ordering: Message identifiers are associated with each IP packet,  

which enables the recipient to detect and reject duplicates, or to reorder messages that do not 

arrive in sender order. 

Message destinations: A pair of communicating processes establish a connection before they can 

communicate over a stream. Once a connection is established, the processes simply read from 

and write to the stream without needing to use Internet addresses and ports. Establishing a 

connection involves a connect request from client to server followed by an accept request from 

server to client before any communication can take place. This could be a considerable overhead 

for a single client-server request and reply. 

Java API  for TCP streams  •  The Java interface to  TCP  streams  is provided in the classes 

ServerSocket and Socket: 

ServerSocket: This class is intended for use by a server to create a socket at a server port for 

listening for connect requests from clients. Its accept method gets a connect request from the 

queue or, if the queue is empty, blocks until one arrives. The result of executing accept is an 

instance of Socket – a socket to use for communicating with the client. 

Socket: This class is for use by a pair of processes with a connection. The client uses a 

constructor to create a socket, specifying the DNS hostname and port of a server. This 

constructor not only creates a socket associated with a local port but also connects it to the 

specified remote computer and port number. It can throw an UnknownHostException if the 

hostname is wrong or an IOException if an IO error occurs. 

TCP client makes connection to server, sends request and receives reply 
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TCP server makes a connection for each client and then echoes the client’s request 
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External data representation and marshalling 
 

The information stored in running programs is represented as data structures – for example, by 

sets of interconnected objects – whereas the information in messages consists of sequences of 

bytes. Irrespective of the form of communication used, the data structures must be flattened 

(converted to a sequence of bytes) before transmission and rebuilt on arrival. The individual 

primitive data items transmitted in messages can be data values of many different types, and not 

all computers store primitive values such as integers in the same order. The representation of 

floating-point numbers also differs between architectures. There are two variants for the ordering 

of integers: the so-called big-endian order, in which the most significant byte comes first; and 

little-endian order, in which it comes last. Another issue is the set of codes used to represent 

characters: for example, the majority of applications on systems such as UNIX use ASCII 

character coding, taking one byte per character, whereas the Unicode standard allows for the 

representation of texts in many different languages and takes two bytes per character. 

One of the following methods can be used to enable any two computers to exchange binary data 

values: 

• The values are converted to an agreed external format before transmission and converted to the 

local form on receipt; if the two computers are known to be the same type, the conversion to 

external format can be omitted. 

• The values are transmitted in the sender’s format, together with an indication of the format 

used, and the recipient converts the values if necessary. Note, however, that bytes themselves are 

never altered during transmission. To support RMI or RPC, any data type that can be passed as 

an argument or returned as a result must be able to be flattened and the individual primitive data 

values represented in an agreed format. An agreed standard for the representation of data 

structures and primitive values is called an external data representation. 

Marshalling is the process of taking a collection of data items and assembling them into a form 

suitable for transmission in a message. Unmarshalling is the process of disassembling them on 

arrival to produce an equivalent collection of data items at the destination. Thus marshalling 

consists of the translation of structured data items and 

primitive values into an external data representation. Similarly, unmarshalling consists of the 

generation of primitive values from their external data representation and the rebuilding of the 

data structures. 
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Three alternative approaches to external data representation and marshalling are discussed: 

• CORBA’s common data representation, which is concerned with an external representation for 

the structured and primitive types that can be passed as the arguments and results of remote 

method invocations in CORBA. It can be used by a variety of programming languages. 

• Java’s object serialization, which is concerned with the flattening and external data 

representation of any single object or tree of objects that may need to be transmitted in a message 

or stored on a disk. It is for use only by Java. 

• XML (Extensible Markup Language), which defines a textual fomat for representing structured 

data. It was originally intended for documents containing textual self-describing structured data – 

for example documents accessible on the Web – but it is now also used to represent the data sent 

in messages exchanged by clients and servers in web services. 

In the first two cases, the marshalling and unmarshalling activities are intended to be carried out 

by a middleware layer without any involvement on the part of the application programmer. Even 

in the case of XML, which is textual and therefore more accessible to hand-encoding, software 

for marshalling and unmarshalling is available for all commonly used platforms and 

programming environments. Because marshalling requires the consideration of all the finest 

details of the representation of the primitive components of composite objects, the process is 

likely to be error-prone if carried out by hand. Compactness is another issue that can be  

addressed in the design of automatically generated marshalling procedures. 

In the first two approaches, the primitive data types are marshalled into a binary form. In the 

third approach (XML), the primitive data types are represented textually. The textual 

representation of a data value will generally be longer than the equivalent binary representation. 

The HTTP protocol, which is described in Chapter 5, is another example of the textualapproach. 

Another issue with regard to the design of marshalling methods is whether the marshalled data 

should include information concerning the type of its contents. For example, CORBA’s 

representation includes just the values of the objects transmitted, and nothing about their types. 

On the other hand, both Java serialization and XML do include type information, but in different 

ways. Java puts all of the required type information into the serialized form, but XML documents 

may refer to externally defined sets of names (with types) called namespaces. 

Although we are interested in the use of an external data representation for the arguments and 

results of RMIs and RPCs, it does have a more general use for representing data structures, 

objects or structured documents in a form suitable for transmission in messages or storing in 

files. 
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CORBA CDR for constructed types 

 
 

 

 

 

 

COBRBA’s Common Data Representation (CDR) 

 

CORBA CDR is the external data representation defined with CORBA 2.0. CDR can represent 

all of the data types that can be used as arguments and return values in remote invocations in 

CORBA. These consist of 15 primitive types, which include short (16-bit), long (32-bit), 

unsigned short, unsigned long, float (32-bit), double (64-bit), char, boolean (TRUE, FALSE), 

octet (8-bit), and any (which can represent any basic or constructed type); together with a range 

of composite types, which are described in Figure 4.7. Each argument or result in a remote 

invocation is 

represented by a sequence of bytes in the invocation or result message. 
 
 

 
Marshalling in CORBA • Marshalling operations can be generated automatically from the 

specification of the types of data items to be transmitted in a message. The types of the data 

structures and the types of the basic data items are described in CORBA IDL (see Section 8.3.1), 

which provides a notation for describing the types of the arguments and results of RMI methods. 

 

Java object serialization 
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In Java RMI, both objects and primitive data values may be passed as arguments and results of 

method invocations. An object is an instance of a Java class. For example, the Java class 

equivalent to the Person struct defined in CORBA IDL might be: 

 

public class Person implements Serializable { 
private String name; 

private String place; 

private int year; 

public Person(String aName, String aPlace, int aYear) {name = aName; place = aPlace; year = aYear; 

} 

// followed by methods for accessing the instance variables 

} 

 

Extensible Markup Language (XML) 

 

XML is a markup language that was defined by the World Wide Web Consortium (W3C) for 

general use on the Web. In general, the term markup language refers to a textual encoding that 

represents both a text and details as to its structure or its appearance. Both XML and HTML 

were derived from SGML (Standardized Generalized Markup Language) [ISO 8879], a very 

complex markup language. HTML was designed for defining the appearance of web pages. 

XML was designed for writing structured documents for the Web. 

 
XML data items are tagged with ‘markup’ strings. The tags are used to describe the logical 

structure of the data and to associate attribute-value pairs with logical structures. That is, in 

XML, the tags relate to the structure of the text that they enclose, in contrast to HTML, in which 

the tags specify how a browser could display the text. For a specification of XML, see the pages 

on XML provided by W3C [www.w3.org VI]. 

 

XML is used to enable clients to communicate with web services and for defining the interfaces 

and other properties of web services. However, XML is also used in many other ways, including 

in archiving and retrieval systems – although an XML archive may be larger than a binary one, it 

has the advantage of being readable on any computer. 

Other examples of uses of XML include for the specification of user interfaces and the encoding 

of configuration files in operating systems. 

 

XML is extensible in the sense that users can define their own tags, in contrast to HTML, which 

uses a fixed set of tags. However, if an XML document is intended to be used by more than one 

application, then the names of the tags must be agreed between them. For example, clients 

usually use SOAP messages to communicate with web 

services. SOAP is an XML format whose tags are published for use by web services and their 
clients. 

 

Some external data representations (such as CORBA CDR) do not need to be self describing, 

because it is assumed that the client and server exchanging a message have prior knowledge of 

the order and the types of the information it contains. However, XML was intended to be used by 

multiple applications for different purposes. The provision of tags, together with the use of 

namespaces to define the meaning of the tags, has made this possible. In addition, the use of tags 

enables applications to select just those parts of a document it needs to process: it will not be 

http://www.w3.org/
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affected by the addition of information relevant to other applications. 

- 

XML definition of the Person structure 
 
 

 

 

Remote object references 

 

Java and CORBA that support the distributed object model. It is not relevant to XML. When a 

client invokes a method in a remote object, an invocation message is sent to the server process 

that hosts the remote object. This message needs to specify which particular object is to have its 

method invoked. A remote object reference is an identifier for a remote object that is valid 

throughout a distributed system. A remote object reference is passed in the invocation message  

to specify which object is to be invoked. Chapter 5 explains that remote object references are  

also passed as arguments and returned as results of remote method invocations, that each remote 

object has a single remote object reference and that remote object references can be compared to 

see whether they refer to the same remote object. Here, we discuss the external representation of 

remote object references. 

Client-server communication 

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments) sends a request 
message to the remote object and returns the reply. 

 

The arguments specify the remote object, the method to be invoked and the arguments of that 

method. 

 

public byte[] getRequest (); acquires a client request via the server port. 

 
public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); sends the reply 
message reply to the client at its Internet address and port. 
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RPC exchange protocols 

HTTP request message 

HTTP reply message 

 

 
Request-reply communication 

 

Group communication 

 

A multicast operation is more appropriate – this is an operation that sends a single message from 

one process to 

each of the members of a group of processes, usually in such a way that the membership of the 

group is transparent to the sender. There is a range of possibilities in the desired behaviour of a 

multicast. The simplest multicast rotocol provides no guarantees about message delivery or 

ordering. 

Multicast messages provide a useful infrastructure for constructing distributed systems with the 

following characteristics: 

1. Fault tolerance based on replicated services: A replicated service consists of a group of 

servers. Client requests are multicast to all the members of the group, each of which performs an 

identical operation. Even when some of the members fail, clients can still be served. 

2. Discovering services in spontaneous networking: Section 1.3.2 defines service discovery in 

the context of spontaneous networking. Multicast messages can be used by servers and clients to 

locate available discovery services in order to register their interfaces or to look up the interfaces 

of other services in the distributed system. 

3. Better performance through replicated data: Data are replicated to increase the performance 
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of a service – in some cases replicas of the data are placed in users’ computers. Each time the 

data changes, the new value is multicast to the processes managing the replicas. 

4. Propagation of event notifications: Multicast to a group may be used to notify processes when 

something happens. For example, in Facebook, when someone changes their status, all their 

friends receive notifications. Similarly, publishsubscribe protocols may make use of group 

multicast to disseminate events to subscribers (see Chapter 6). 

IP multicast – An implementation of multicast communication 

IP multicast • IP multicast is built on top of the Internet Protocol (IP). Note that IP packets are 

addressed to computers – ports belong to the TCP and UDP levels. IP multicast allows the sender 

to transmit a single IP packet to a set of computers that form a multicast group. The sender is 

unaware of the identities of the individual recipients and of the size of the group. A multicast 

group is specified by a Class D Internet address – that is, an address whose first 4 bits are 1110  

in IPv4. 

At the application programming level, IP multicast is available only via UDP. An application 

program performs multicasts by sending UDP datagrams with multicast addresses and ordinary 

port numbers. It can join a multicast group by making its socket join the group, enabling it to 

receive messages to the group. At the IP level, a computer belongs to a multicast group when one 

or more of its processes has sockets that belong to that group. When a multicast message arrives 

at a computer, copies are forwarded to all of the local sockets that have joined the specified 

multicast address and are bound to the specified port number. The following details are specific 

to IPv4: 

Multicast routers: IP packets can be multicast both on a local network and on the wider Internet. 

Local multicasts use the multicast capability of the local network, for example, of an Ethernet. 

Internet multicasts make use of multicast routers, which forward single datagrams to routers on 

other networks, where they are again multicast to local members. To limit the distance of 

propagation of a multicast datagram, the sender can specify the number of routers it is allowed to 

pass – called the time to live, or TTL for short. To understand how routers know which other 

routers have members of a multicast group. 

Multicast address allocation: As discussed in Chapter 3, Class D addresses (that is, addresses in 

the range 224.0.0.0 to 239.255.255.255) are reserved for multicast traffic and managed globally 

by the Internet Assigned Numbers Authority (IANA). The management of this address space is 

reviewed annually, with current practice documented in RPC 3171. This document defines a 

partitioning of this address space into a number of blocks, including: 
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• Local Network Control Block (224.0.0.0 to 224.0.0.225), for multicast traffic within a given 

local network. 

• Internet Control Block (224.0.1.0 to 224.0.1.225). 

• Ad Hoc Control Block (224.0.2.0 to 224.0.255.0), for traffic that does not fit any other block. 

• Administratively Scoped Block (239.0.0.0 to 239.255.255.255), which is used to implement a 

scoping mechanism for multicast traffic (to constrain propagation). 

Failure model for multicast datagrams • Datagrams multicast over IP multicast have the same 

failure characteristics as UDP datagrams – that is, they suffer from omission failures. The effect 

on a multicast is that messages are not guaranteed to be delivered to any particular  group 

member in the face of even a single omission failure. That is, some but not all of the members of 

the group may receive it. This can be called unreliable multicast, because it does not guarantee 

that a message will be delivered to any member of a group. 

Java API to IP multicast • The Java API provides a datagram interface to IP multicast through 

the class MulticastSocket, which is a subclass of DatagramSocket with the additional capability 

of being able to join multicast groups. The class MulticastSocket provides two alternative 

constructors, allowing sockets to be created to use either a or any free local port. A process can 

join a multicast group with a given multicast address by invoking the joinGroup method of its 

multicast socket. Effectively, the socket joins a multicast group at a given port and it will 

receive datagrams sent by processes on other computers to that group at that port. A process can 

leave a specified group by invoking the leaveGroup method of its multicast socket. 
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Multicast peer joins a group and sends and receives datagrams 

 

Reliability and ordering of multicast 

The effect of the failure semantics of IP multicast on the four examples of the use of replication 

1. Fault tolerance based on replicated services: Consider a replicated service that consists of the 

members of a group of servers that start in the same initial state and always perform the same 

operations in the same order, so as to remain consistent with one another. This application of 

multicast requires that either all of the replicas or none of them should receive each request to 

perform an operation – if one of them misses a request, it will become inconsistent with the 

others. In most cases, this service would require that all members receive request messages in the 

same order as one another. 

2. Discovering services in spontaneous networking: One way for a process to discover services 

in spontaneous networking is to multicast requests at periodic intervals, and for the available 

services to listen for those multicasts and respond. An occasional lost request is not an issue 

when discovering services. 

3. Better performance through replicated data: Consider the case where the replicated data itself, 

rather than operations on the data, are distributed by means of multicast messages. The effect of 

lost messages and inconsistent ordering would depend on the method of replication and the 

importance of all replicas being totally up-to-date. 

4. Propagation of event notifications: The particular application determines the qualities required 

of multicast. For example, the Jini lookup services use IP multicast to announce their existence 
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Communication between Distributed Objects 

The Object Model 

Five Parts of the Object Model 

– An object-oriented program consists of a collection of interacting objects 

• Objects consist of a set of data and a set of methods 

• In DS, object’s data should be accessible only via methods 

Object References 

– Objects are accessed by object references 

– Object references can be assigned to variables, passed as arguments, and returned as the result 

of a method 

– Can also specify a method to be invoked on that object 

Interfaces 

– Provide a definition of the signatures of a set of methods without specifying their 

implementation 

– Define types that can be used to declare the type of variables or of the parameters and return 

values of methods 

Actions 

– Objects invoke methods in other objects 

– An invocation can include additional information as arguments to perform the behavior 

specified by the method 

– Effects of invoking a method 

1. The state of the receiving object may be changed 

2. A new object may be instantiated 

3. Further invocations on methods in other objects may occur 

4. An exception may be generated if there is a problem encountered 

Exceptions 

– Provide a clean way to deal with unexpected events or errors 

– A block of code can be defined to throw an exception when errors or unexpected conditions 

occur. Then control passes to code that catches the exception 

Garbage Collection 

– Provide a means of freeing the space that is no longer needed 

– Java (automatic), C++ (user supplied) 

Distributed Objects 
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• Physical distribution of objects into different processes or computers in a distributed system 

– Object state consists of the values of its instance variables 

– Object methods invoked by remote method invocation (RMI) 

– Object encapsulation: object state accessed only by the object methods 

Usually adopt the client-server architecture 

– Basic model 

• Objects are managed by servers and 

• Their clients invoke their methods using RMI 

– Steps 

1. The client sends the RMI request in a message to the server 

2. The server executes the invoked method of the object 

3. The server returns the result to the client in another message 

– Other models 

• Chains of related invocations: objects in servers may become clients of objects in other servers 

• Object replication: objects can be replicated for fault tolerance and performance 

• Object migration: objects can be migrated to enhancing performance and availability 

 

The Distributed Object Model 

Two fundamental concepts: Remote Object Reference and Remote Interface 

– Each process contains objects, some of which can receive remote invocations are called remote 

objects (B, F), others only local invocations 

– Objects need to know the remote object reference of an object in another process in order to 

invoke its methods, called remote method invocations 

– Every remote object has a remote interface that specifies which of its methods can be invoked 

remotely 

Remote and local method invocations 
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Five Parts of Distributed Object Model 

• Remote Object References 

– accessing the remote object 

– identifier throughout a distributed system 

– can be passed as arguments 

• Remote Interfaces 

– specifying which methods can be invoked remotely 

– name, arguments, return type 

– Interface Definition Language (IDL) used for defining remote interface 

 

Remote Object and Its remote Interface 

• Actions 

– An action initiated by a method invocation may result in further invocations on methods in 

other objects located indifference processes or computers 

– Remote invocations could lead to the instantiation of new objects, ie. objects M and N of 

following figure. 

 

 

• Exceptions 

– More kinds of exceptions: i.e. timeout exception 

- RMI should be able to raise exceptions such as timeouts that are due to distribution as well as 

those raised during the execution of the method invoked 

• Garbage Collection 

- Distributed garbage collections is generally achieved by cooperation between the existing local 

garbage collector and an added module that carries out a form of distributed garbage collection, 

usually based on reference counting 

 

Design Issues for RMI 

• Two design issues that arise in extension of local method invocation for RMI 

L 

C remote 
invocation 

instantiateinstantiate remote 
invocation 

K 

M N 
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– The choice of invocation semantics 

• Although local invocations are executed exactly once, this cannot always be the case for RMI 

due to transmission error 

– Either request or reply message may be lost 

– Either server or client may be crashed 

– The level of transparency 

• Make remote invocation as much like local invocation as possible 

RMI Design Issues: Invocation Semantics 

• Error handling for delivery guarantees 

– Retry request message: whether to retransmit the request message until either a reply is 

received or the server is assumed to have failed 

– Duplicate filtering: when retransmissions are used, whether to filter out duplicate 

requests at the server 

– Retransmission of results: whether to keep a history of result messages to enable lost 

results to be retransmitted without re-executing the operations 

• Choices of invocation semantics 

– Maybe: the method executed once or not at all (no retry nor retransmit) 

– At-least-once: the method executed at least once 

– At-most-once: the method executed exactly once 

Invocation semantics: choices of interest 

 

 
RMI Design Issues: Transparency 

 

• Transparent remote invocation: like a local call 

– marshalling/unmarshalling 

– locating remote objects 

– accessing/syntax 

• Differences between local and remote invocations 
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– latency: a remote invocation is usually several order of magnitude greater than that of a 

local one 

– availability: remote invocation is more likely to fail 

– errors/exceptions: failure of the network? server? hard to tell 

• syntax might need to be different to handle different local vs remote errors/exceptions(e.g. 

Argus) 

– consistency on the remote machine: 

• Argus: incomplete transactions, abort, restore states [as if the call was never made] 

Implementation of RMI 

• Communication module 

– Two cooperating communication modules carry out the request-replyprotocols: 

message type, request ID, remote object reference 

• Transmit request and reply messages between client and server 

• Implement specific invocation semantics 

– The communication module in the server 

• selects the dispatcher for the class of the object to be invoked, 

• passes on local reference from remote reference module, 

• returns request 

The role of proxy and skeleton in remote method invocation 

 
• Remote reference module 

– Responsible for translating between local and remote object references and for creating remote 

object references 

– remote object table: records the correspondence between local and remote object references 

• remote objects held by the process (B on server) 

• local proxy (B on client) 

– When a remote object is to be passed for the first time, the module is asked to create a remote 
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object reference, which it adds to its table 

• Servant 

– An instance of a class which provides the body of a remote object 

– handles the remote requests 

• RMI software 

– Proxy: behaves like a local object, but represents the remote object 

– Dispatcher: look at the methodID and call the corresponding method in the skeleton 

– Skeleton: implements the method 

Generated automatically by an interface compiler 

Implementation Alternatives of RMI 

• Dynamic invocation 

– Proxies are static—interface complied into client code 

– Dynamic—interface available during run time 

• Generic invocation; more info in ―Interface Repository‖ (COBRA) 

• Dynamic loading of classes (Java RMI) 

• Binder 

– A separate service to locate service/object by name through table mapping for names and 

remote object references 

• Activation of remote objects 

– Motivation: many server objects not necessarily in use all of the time 

• Servers can be started whenever they are needed by clients, similar to inetd 

– Object status: active or passive 

• active: available for invocation in a running process 

• passive: not running, state is stored and methods are pending 

– Activation of objects: 

• creating an active object from the corresponding passive object by creatinga 

new instance of its class 

• initializing its instance variables from the stored state 

– Responsibilities of activator 

• Register passive objects that are available for activation 

• Start named server processes and activate remote objects in them 

• Keep track of the locations of the servers for remote objects that it has already 

activated 
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• Persistent object stores 

– An object that is guaranteed to live between activations of processes is called a 

persistent object 

– Persistent object store: managing the persistent objects 

• stored in marshaled from on disk for retrieval 

• saved those that were modified 

– Deciding whether an object is persistent or not: 

• persistent root: any descendent objects are persistent (persistent Java, PerDiS) 

• some classes are declared persistent (Arjuna system) 

• Object location 

– specifying a location: ip address, port #, ... 

– location service for migratable objects 

• Map remote object references to their probable current locations 

• Cache/broadcast scheme (similar to ARP) 

– Cache locations 

– If not in cache, broadcast to find it 

• Improvement: forwarding (similar to mobile IP) 

Distributed Garbage Collection 

• Aim: ensure that an object 

– continues to exist if a local or remote reference to it is still held anywhere 

– be collected as soon as no object any longer holds a reference to it 

• General approach: reference count 

• Java's approach 

– the server of an object (B) keeps track of proxies 

– when a proxy is created for a remote object 

• addRef(B) tells the server to add an entry 

– when the local host's garbage collector removes the proxy 

• removeRef(B) tells the server to remove the entry 

– when no entries for object B, the object on server is deallocated 

Remote Procedure Call 

• client: "stub" instead of "proxy" (same function, different names) 

– local call, marshal arguments, communicate the request 
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• server: 

– dispatcher 

– "stub": unmarshal arguments, communicate the results back 

 

Role of client and server stub procedures in RPC in the context of a procedural language 

 

 
Case Study: Sun RPC 

• Sun RPC: client-server in the SUN NFS (network file system) 

– UDP or TCP; in other unix OS as well 

– Also called ONC (Open Network Computing) RPC 

• Interface Definition Language (IDL) 

– initially XDR is for data representation, extended to be IDL 

– less modern than CORBA IDL and Java 

• program numbers instead of interface names 

• procedure numbers instead of procedure names 

• single input parameter (structs) 

– rpcgen: compiler for XDR 

• client stub; server main procedure, dispatcher, and server stub 

• XDR marshalling, unmarshaling 

• Binding (registry) via a local binder - portmapper 

– Server registers its program/version/port numbers with portmapper 

– Client contacts the portmapper at a fixed port with program/version numbers to get the 

server port 

– Different instances of the same service can be run on different computers at different ports 

• Authentication 

– request and reply have additional fields 
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– unix style (uid, gid), shared key for signing, Kerberos 

Files interface in Sun XDR 

Events and Notifications 

• Idea behind the use of events 

– One object can react to a change occurring in another object 

• Events 

– Notifications of events: objects that represent events 

• asynchronous and determined by receivers what events are interested 

– event types 

• each type has attributes (information in it) 

• subscription filtering: focus on certain values in the attributes (e.g. "buy" events, but 

only "buy car" events) 

• Publish-subscribe paradigm 

– publish events to send 

– subscribe events to receive 

• Main characteristics in distributed event-based systems 

– Heterogeneous: a way to standardize communication inheterogeneous 

systems 

• not designed to communicate directly 

– Asynchronous: notifications are sent asynchronously 
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• no need for a publisher to wait for each subscriber--subscribers come and go 

 

Dealing room system: allow dealers using computers to see the latest information about the 

market prices of the stocks they deal in 

 

Distributed Event Notification 

• Distributed event notification 

– decouple publishers from subscribers via an event service (manager) 

• Architecture: roles of participating objects 

– object of interest (usually changes in states are interesting) 

– event 

– notification 

– subscriber 

– observer object (proxy) [reduce work on the object of interest] 

• forwarding 

• filtering of events types and content/attributes 

• patterns of events (occurrence of multiple events, not just one) 

• mailboxes (notifications in batch es, subscriber might not be ready) 

– publisher (object of interest or observer object) 
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• generates event notifications 

Example: Distributed Event Notification 
 

• Three cases 

– Inside object without an observer: send notifications directly to the subscribers 

– Inside object with an observer: send notification via the observer to the subscribers 

– Outside object (with an observer) 

1. An observer queries the object of interest in order to discover when events occur 

2. The observer sends notifications to the subscribers 

Case Study: Java RMI 

 

Java Remote interfaces Shape and ShapeList and Java class ShapeListServant implements 

interface 
ShapeList
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Java class ShapeListServer with main and Java client of ShapreList 

Naming class of Java RMIregistry 
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Java class ShapeListServant implements interface ShapeList 

 

Java class ShapeListServer with main method 
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- 
 

 

 

 

Java class ShapeListServant implements interface ShapeList 
 

 

Java RMI Callbacks 

• Callbacks 

– server notifying the clients of events 

– why? 

 

 

– how 

• polling from clients increases overhead on server 

• not up-to-date for clients to inform users 

 

• remote object (callback object) on client for server to call 

• client tells the server about the callback object, server put the client on a list 

• server call methods on the callback object when events occur 

– client might forget to remove itself from the list 

• lease--client expire 
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The task of any operating system is to provide problem-oriented abstractions of the underlying 

physical resources – the processors, memory, networks, and storage media. An operating system 

such as UNIX (and its variants, such as Linux and Mac OS X) or Windows (and its variants,  

such as XP, Vista and Windows 7) provides the programmer with, for example, files rather than 

disk blocks, and with sockets rather than raw network access. It takes over the physical resources 

on a single node and manages them to present these resource abstractions through the system-call 

interface. 

The operating system’s middleware support role, it is useful to gain some historical perspective 

by examining two operating system concepts that have come about during the development of 

distributed systems: network operating systems and distributed operating systems. 

Both UNIX and Windows are examples of network operating systems. They have a networking 

capability built into them and so can be used to access remote resources. Access is network- 

transparent for some – not all – types of resource. For example, through a distributed file system 

such as NFS, users have network-transparent access to files. That is, many of the files that users 

access are stored remotely, on a server, and this is largely transparent to their applications. 

 

 

 
An operating system that produces a single system image like this for all the resources in a 
distributed system is called a distributed operating system 

 

 
 

 

 

Middleware and the Operating System 

What is a distributed OS? 
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• Presents users (and applications) with an integrated computing platform that hides 

the individual computers. 

• Has control over all of the nodes (computers) in the network and allocates their 

resources to tasks without user involvement. 

• In a distributed OS, the user doesn't know (or care) where his programs 

are running. 

• Examples: 

• Cluster computer systems 

• V system, Sprite 

• In fact, there are no distributed operating systems in general use, only network operating 

systems such as UNIX, Mac OS and Windows. 

• to remain the case, for two main reasons. 

The first is that users have much invested in their application software, which often meets their 

current problem-solving needs; they will not adopt a new operating system that will not run their 

applications, whatever efficiency advantages it offers. 

The second reason against the adoption of distributed operating systems is that users tend to 

prefer to have a degree of autonomy for their machines, even in a closely knit organization. 

Combination of middleware and network OS 

• No distributed OS in general use 

– Users have much invested in their application software 

– Users tend to prefer to have a degree of autonomy for their machines 

• Network OS provides autonomy 

• Middleware provides network-transparent access resource 

The relationship between OS and Middleware 

• Operating System 

– Tasks: processing, storage and communication 

– Components: kernel, library, user-level services 

• Middleware 

– runs on a variety of OS-hardware combinations 

– remote invocations 

 
Functions that OS should provide for middleware 

 

The following figure shows how the operating system layer at each of two nodes supports a 
common middleware layer in providing a distributed infrastructure for applications and services. 
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OS: 
kernel, libraries & servers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Encapsulation: They should provide a useful service interface to their resources – that is, a set of 

operations that meet their clients’ needs. Details such as management of memory and devices 

used to implement resources should be hidden from clients. 

Protection: Resources require protection from illegitimate accesses – for example, files are 

protected from being read by users without read permissions, and device registers are protected 

from application processes. 

Concurrent processing: Clients may share resources and access them concurrently. Resource 

managers are responsible for achieving concurrency transparency. 

Communication: Operation parameters and results have to be passed to and from resource 

managers, over a network or within a computer. 

Scheduling: When an operation is invoked, its processing must be scheduled within the kernel or 

server. 

The core OS components 

Computer & 
network hardware 

Computer & 
network hardware 

 

 
, 

 
OS2 

Processes, threads 
communication, ... 

 
OS1 

Processes, threads, 
communication, ... 

 
Applications, services 

 

Middleware 
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Process manager 

Communication 

manager 

Thread manager Memorymanager 

Supervisor 

 

• Process manager 

– Handles the creation of and operations upon processes. 

• Thread manager 

– Thread creation, synchronization and scheduling 

• Communication manager 

– Communication between threads attached to different processes on the same 

computer 

• Memory manager 

– Management of physical and virtual memory 

• Supervisor 

– Dispatching of interrupts, system call traps and other exceptions 

– control of memory management unit and hardware caches 

processor and floating point unit register manipulations 

Software and hardware service layers in distributed systems 

 
 

platform 
 

Middleware and Openness 

• In an open middleware-based distributed system, the protocols used by each middleware 

layer should be the same, as well as the interfaces they offer to applications. 

 

Applications, services 

Middleware 

Operating system 
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Typical Middleware Services 

• Communication 

• Naming 

• Persistence 

• Distributed transactions 

• Security 

Middleware Models 

• Distributed files 

– Examples? 

• Remote procedure call 

– Examples? 

• Distributed objects 

– Examples? 

• Distributed documents 

– Examples? 

• Others? 

– Message-oriented middleware (MOM) 

– Service oriented architecture (SOA) 

– Document-oriented 

Middleware and the Operating System 

• Middleware implements abstractions that support network-wide programming. Examples: 

• RPC and RMI (Sun RPC, Corba, Java RMI) 

• event distribution and filtering (Corba Event Notification, Elvin) 

• resource discovery for mobile and ubiquitous computing 

• support for multimedia streaming 

• Traditional OS's (e.g. early Unix, Windows 3.0) 

– simplify, protect and optimize the use of local resources 

• Network OS's (e.g. Mach, modern UNIX, Windows NT) 

– do the same but they also support a wide range of communication standards and 
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enable remote processes to access (some) local resources (e.g. files). 

DOS vs. NOS vs. Middleware Discussion 

• What is good/bad about DOS? 

– Transparency 

– Other issues have reduced success. 

– Problems are often socio-technological. 

• What is good/bad about NOS? 

– Simple. 

– Decoupled, easy to add/remove. 

– Lack of transparency. 

• What is good/bad about middleware? 

– Easy to make multiplatform. 

– Easy to start something new. 

• But this can also be bad. 

Types of Distributed Oss 

 

System Description Main Goal 

 

DOS 
Tightly-coupled 

multi-processors 

multicomputers 

operating 
and 

system for 
homogeneous 

Hide and 
resources 

manage hardware 

 

NOS 
Loosely-coupled operating system for 
heterogeneous multicomputers (LAN and 

WAN) 

Offer local services to remote 

clients 

 

Middleware Additional layer atop of NOS 

implementing general-purpose services 

 

Provide distribution transparency 

Illegitimate access 

• Maliciously contrived code 

• Benign code 

– contains a bug 

– have unanticipated behavior 

• Example: read and write in File System 

– Illegal user vs. access right control 

– Access the file pointer variable directly (setFilePointerRandomly) vs. type-safe 

language 
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• Type–safe language, e.g. Java or Modula-3 

• Non-type-safe language, e.g. C or C++ 

Kernel and Protection 

• Kernel 

– always runs 

– complete access privileges for the physical resources 

• Different execution mode 

– An address space: a collection of ranges of virtual memory locations, in each of 

which a specified combination of memory access rights applies, e.g.: read only or 

read-write 

– supervisor mode (kernel process) / user mode (user process) 

– Interface between kernel and user processes: system call trap 

• The price for protection 

– switching between different processes take many processor cycles 

– a system call trap is a more expensive operation than a simple method call 

The System Clock 

 

 
 

 
Process and thread 

• Process 

– A program in execution 

– Problem: sharing between related activities are awkward and expensive 

– Nowadays, a process consists of an execution environment together with one or 

more threads 

– an analogy at page 215 
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• Thread 

– Abstraction of a single activity 

– Benefits 

• Responsiveness 

• Resource sharing 

• Economy 

• Utilization of MP architectures 

Execution environment 

• the unit of resource management 

• Consist of 

– An address space 

– Thread synchronization and communication resources such as semaphores and 

communication interfaces (e.g. sockets) 

– Higher-level resources such as open files and windows 

• Shared by threads within a process 

Address space 

• Address space 

– a unit of management of a process’s virtual memory 

– Up to 232 bytes and sometimes up to 264 bytes 

– consists of one or more regions 

• Region 

– an area of continuous virtual memory that is accessible by the threads of the 

owning process 

• The number of regions is indefinite 

– Support a separate stack for each thread 

– access mapped file 

– Share memory between processes 

• Region can be shared 

– Libraries 

– Kernel 

– Shared data and communication 

– Copy-on-write 

•  
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N 2 

 

 

 

 

 

 

 

 

 

 

 

                   0 

 

 
Creation of new process in distributed system 

• Creating process by the operation system 

– Fork, exec in UNIX 

• Process creation in distributed system 

– The choice of a target host 

– The creation of an execution environment, an initial thread 

Choice of process host 

• Choice of process host 

– running new processes at their originator’s computer 

– sharing processing load between a set of computers 

• Load sharing policy 

– Transfer policy: situate a new process locally or remotely? 

– Location policy: which node should host the new process? 

• Static policy without regard to the current state of the system 

• Adaptive policy applies heuristics to make their allocation decision 

– Migration policy: when&where should migrate the running process? 

• Load sharing system 

– Centralized 

– Hierarchical 

– Decentralized 

Creation of a new execution environment 

 Initializing the address space 

Auxiliary 

regions 

Stack 

Heap 

Text 
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– Statically defined format 

– With respect to an existing execution environment, e.g. fork 

• Copy-on-write scheme 

 

Threads concept and implementation 
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Alternative server threading architectures 

workers 
per-connectionthreads per-objectthreads 

I/O remote 

objects 

   remote 

objects 

I/O remote 

objects 

a. Thread-per-request b.Thread-per-connection c. Thread-per-object 

Threads versus multiple processes 

 

• Creating a thread is (much) cheaper than a process (~10-20 times) 

• Switching to a different thread in same process is (much) cheaper (5-50 times) 

• Threads within same process can share data and other resources more conveniently and 
efficiently (without copying or messages) 

• Threads within a process are not protected from each other 

Client and server with threads 
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State associated with execution environments and threads 

 
 

Threads implementation 

Threads can be implemented: 

– in the OS kernel (Win NT, Solaris, Mach) 

– at user level (e.g. by a thread library: C threads, pthreads), or in the language 

(Ada, Java). 

 

+ lightweight - no system calls 

 

+ modifiable scheduler 

 

+ low cost enables more threads to be employed 

- not pre-emptive 

- can exploit multiple processors 

- - page fault blocks all threads 

– hybrid approaches can gain some advantages of both 

- user-level hints to kernel scheduler 

- hierarchic threads (Solaris 2) 

- event-based (SPIN, FastThreads) 

Implementation of invocation mechanisms 

• Communication primitives 

– TCP(UDP) Socket in Unix and Windows 

– DoOperation, getRequest, sendReply in Amoeba 

– Group communication primitives in V system 

• Protocols and openness 

– provide standard protocols that enable internetworking between middleware 

– integrate novel low-level protocols without upgrading their application 

– Static stack 

• new layer to be integrated permanently as a ―driver‖ 
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– Dynamic stack 

• protocol stack be composed on the fly 

• E.g. web browser utilize wide-area wireless link on the road and faster 

Ethernet connection in the office 

• Invocation costs 

– Different invocations 

– The factors that matter 

• synchronous/asynchronous, domain transition, communication across a 

network, thread scheduling and switching 

• Invocation over the network 

– Delay: the total RPC call time experienced by a client 

– Latency: the fixed overhead of an RPC, measured by null RPC 

– Throughput: the rate of data transfer between computers in a single RPC 

– An example 

• Threshold: one extra packet to be sent, might be an extra acknowledge 

packet is needed 

Invocations between address spaces  

 

Support for communication and invocation 

• The performance of RPC and RMI mechanisms is critical for effectivedistributed 

systems. 
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– Typical times for 'null procedure call': 

– Local procedure call < 1 microseconds 

– Remote procedure call ~ 10 milliseconds 

– 'network time' (involving about 100 bytes transferred, at 100 megabits/sec.) 

accounts for only .01 millisecond; the remaining delays must be in OS and 

middleware - latency, not communication time. 

• Factors affecting RPC/RMI performance 

– marshalling/unmarshalling + operation despatch at the server 

– data copying:- application -> kernel space -> communication buffers 

– thread scheduling and context switching:- including kernel entry 

– protocol processing:- for each protocol layer 

– network access delays:- connection setup, network latency 

 

Improve the performance of RPC 

• Memory sharing 

– rapid communication between processes in the same computer 

• Choice of protocol 

– TCP/UDP 

• E.g. Persistent connections: several invocations during one 

– OS’s buffer collect several small messages and send them together 

• Invocation within a computer 

– Most cross-address-space invocation take place within a computer 

– LRPC (lightweight RPC) 
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A client stub marshals the call arguments into a message, sends the request message and 

receives and unmarshals the reply. 

At the server, a worker thread receives the incoming request, or an I/O threadreceives the 

request and passes it to a worker thread; in either case, the worker calls the appropriate 

server stub. 

The server stub unmarshals the request message, calls the designated procedure, and 

marshals and sends the reply. 

The following are the main components accounting for remote invocation delay, besides 

network transmission times: 

Marshalling: Marshalling and unmarshalling, which involve copying and converting data, create 

a significant overhead as the amount of data grows. 

Data copying: Potentially, even after marshalling, message data is copied several times in the 

course of an RPC: 

1. across the user–kernel boundary, between the client or server address space andkernel 

buffers; 

2. across each protocol layer (for example, RPC/UDP/IP/Ethernet); 

3. between the network interface and kernel buffers. 

Transfers between the network interface and main memory are usually handled by direct 

memory access (DMA). The processor handles the other copies. 

Packet initialization: This involves initializing protocol headers and trailers, including 

checksums. The cost is therefore proportional, in part, to the amount of data sent. 

Thread scheduling and context switching: These may occur as follows: 

1. Several system calls (that is, context switches) are made during an RPC, as stubs 

invoke the kernel’s communication operations. 

2. One or more server threads is scheduled. 

3. If the operating system employs a separate network manager process, then each 

Send involves a context switch to one of its threads. 

Waiting for acknowledgements: The choice of RPC protocol may influence delay, particularly 

when large amounts of data are sent. 
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A lightweight remote procedure call 

Bershad's LRPC 

 

 Uses shared memory for interprocess communication 

– while maintaining protection of the two processes 

– arguments copied only once (versus four times for convenitional RPC) 

 Client threads can execute server code 

– via protected entry points only (uses capabilities) 

 Up to 3 x faster for local invocations 
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Asynchronous operation 

• Performance characteristics of the Internet 

– High latencies, low bandwidths and high server loads 

– Network disconnection and reconnection. 

– outweigh any benefits that the OS can provide 

• Asynchronous operation 

– Concurrent invocations 

• E.g., the browser fetches multiple images in a home page by concurrent 

GET requests 

– Asynchronous invocation: non-blocking call 

• E.g., CORBA oneway invocation: maybe semantics, or collect result by a 

separate call 

• Persistent asynchronous invocations 

– Designed for disconnected operation 

– Try indefinitely to perform the invocation, until it is known to have succeeded or 

failed, or until the application cancels the invocation 

– QRPC (Queued RPC) 

• Client queues outgoing invocation requests in a stable log 

• Server queues invocation results 

• The issues to programmers 

– How user can continue while the results of invocations are still not known? 

 

The following figure shows the potential benefits of interleaving invocations (such as HTTP 

requests) between a client and a single server on a single-processor machine. In the serialized 

case, the client marshals the arguments, calls the Send operation and then waits until the reply 

from the server arrives – whereupon it Receives, unmarshals and then processes the results. After 

this it can make the second invocation. 
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Times for serialized and concurrent invocations 

 
In the concurrent case, the first client thread marshals the arguments and calls the Send  

operation. The second thread then immediately makes the second invocation. Each thread waits 

to receive its results. The total time taken is liable to be lower than in the serialized case, as the 

figure shows. Similar benefits apply if the client threads make concurrent requests to several 

servers, and if the client executes on a multiprocessor even greater throughput is potentially 

possible, since the two threads’ processing can also be overlapped. 

Operating System Architecture 

▪ A key principle of distributed systems is openness. 

▪ The major kernel architectures: 

➢ Monolithic kernels 

➢ Micro-kernels 

▪ An open distributed system should make it possible to: 

➢ Run only that system software at each computer that is necessary for its particular 

role in the system architecture. For example, system software needs for PDA and 

dedicated server are different. Loading redundant modules wastes memory 

resources. 

➢ Allow the software (and the computer) implementing any particular service to be 
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rroagm: 

changed independent of other facilities. 

➢ Allow for alternatives of the same service to be provided, when this is required to 

suit different users or applications. 

➢ Introduce new services without harming the integrity of existing ones. 

▪ A guiding principle of operating system design: 

➢ The  separation  of   fixed  resource   management   ―mechanisms―   from  resource 

management  ―policies‖, which vary from application to application and service to 

service. 

➢ For example, an ideal scheduling system would provide mechanisms that enable a 

multimedia application such as videoconferencing to meet its real-time demands 

The kernel would provide only the most basic mechanisms upon which  the 

general resource management tasks at a node are carried out. 

➢ Server modules would be dynamically loaded as required, to implement the 

required resourced management policies for the currently running applications. 

➢ while coexisting with a non-real-time application such as web browsing. 

▪ Monolithic Kernels 

➢ A monolithic kernel can contain some server processes that execute within its 

address space, including file servers and some networking. 

➢ The code that these processes execute is part or the standard kernel configuration. 

Monolithic kernel and microkernel 

 

 

....... 

 
....... 

 

 

 

Key: 

MonolithicKernel Microkernel 

 

Server: 

▪ Microkernel 

Kernelcodeanddata: Dynamically loaded serverp 

 
S4 

 
S3 

 
S2 

 
S1 

 
S4 

....... 
S3 S1 S2 



  

 

Distributed Systems                                                                                                                                                    Page 116 
 

➢ The microkernel appears as a layer between hardware layer and a layer consisting 

of major systems. 

If performance is the goal, rather than portability, then middleware may use the 

facilities of the microkernel directly. 

 

The role of the microkernel 
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The microkernel supports middleware via subsystems 

▪ Monolithic and Microkernel comparison 

➢ The advantages of a microkernel 

❖ Its extensibility 

❖ Its ability to enforce modularity behind memory protectionboundaries. 

❖ Its small kernel has less complexity. 

➢ The advantages of a monolithic 

❖ The relative efficiency with which operations can be invoked because 

even invocation to a separate user-level address space on the same node is 

more costly. 

▪ Hybrid Approaches 

➢ Pure microkernel operating system such as Chorus & Mach have changed over a 

time to allow servers to be loaded dynamically into the kernel address space or 

into a user-level address space. 

In some operating system such as SPIN, the kernel and all dynamically loaded 

modules grafted onto the kernel execute within a single address space 
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UNIT IV 

 
Distributed File Systems: Introduction, File service Architecture, Case Study1: Sun Network File System, 

Case Study 2: The Andrew File System. 

Distributed Shared Memory: Introduction Design and Implementation issues, Sequential consistency and 

Ivy case study, Release consistency and Munin case study, other consistency models. 

 

DISTRIBUTED FILE SYSTEMS 

A file system is responsible for the organization, storage, retrieval, naming, sharing, and 

protection of files. File systems provide directory services, which convert a file name (possibly a 

hierarchical one) into an internal identifier (e.g. inode, FAT index). They contain a 

representation of the file data itself and methods for accessing it (read/write). The file system is 

responsible for controlling access to the data and for performing low-level operations such as 

buffering frequently used data and issuing disk I/O requests. 

A distributed file system is to present certain degrees of transparency to the user and the system: 

Access transparency: Clients are unaware that files are distributed and can access them in the 

same way as local files are accessed. 

Location transparency: A consistent name space exists encompassing local as well as remote 

files. The name of a file does not give it location. 

Concurrency transparency: All clients have the same view of the state of the file system. This 

means that if one process is modifying a file, any other processes on the same system or remote 

systems that are accessing the files will see the modifications in a coherent manner. 

Failure transparency: The client and client programs should operate correctly after a server 

failure. 

Heterogeneity: File service should be provided across different hardware and operating system 

platforms. 

Scalability: The file system should work well in small environments (1 machine, a dozen 

machines) and also scale gracefully to huge ones (hundreds through tens of thousands of 

systems). 

Replication transparency: To support scalability, we may wish to replicate files across  

multiple servers. Clients should be unaware of this. 

Migration transparency: Files should be able to move around without the client's knowledge. 

Support fine-grained distribution of data: To optimize performance, we may wish to locate 
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individual objects near the processes that use them 

Tolerance for network partitioning: The entire network or certain segments of it may be 

unavailable to a client during certain periods (e.g. disconnected operation of a laptop). The file 

system should be tolerant of this. 

File Service Architecture 

 

▪ An architecture that offers a clear separation of the main concerns in providing access 
to files is obtained by structuring the file service as three components: 

➢ A flat file service 

➢ A directory service 

➢ A client module. 

▪ The relevant modules and their relationship is shown in Figure 5. 

 

Figure 5. File service architecture 
 
 

▪ The Client module implements exported interfaces by flat file and directory services 

on server side. 
▪ Responsibilities of various modules can be defined as follows: 

➢ Flat file service: 

❖ Concerned with the implementation of operations on the contents of file. 
Unique File Identifiers (UFIDs) are used to refer to files in all requests 
for 

flat file service operations. UFIDs are long sequences of bits chosen 
so that each file has a unique among all of the files in a distributed 

system. 

➢ Directory service: 

❖ Provides mapping between text names for the files and their UFIDs. 

Clients may obtain the UFID of a file by quoting its text name to 

directory service. Directory service supports functions needed generate 

directories, to add new files to directories. 

➢ Client module: 

❖ It runs on each computer and provides integrated service (flat file and 

directory) as a single API to application programs. For example, in 

UNIX hosts, a client module emulates the full set of Unix file 
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operations. 

❖ It holds information about the network locations of flat-file and 

directory server processes; and achieve better performance through 

implementation of a cache of recently used file blocks at the client. 

➢ Flat file service interface: 

❖ Figure 6 contains a definition of the interface to a flat file service. 

 
Figure 6. Flat file service operations 

 

 

➢ Access control 

❖ In distributed implementations, access rights checks have to be 

performed at the server because the server RPC interface is an 

otherwise unprotected point of access to files. 

➢ Directory service interface 

❖ Figure 7 contains a definition of the RPC interface to a directory service. 

 
Figure 7. Directory service operations 
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➢ Hierarchic file system 

❖ A hierarchic file system such as the one that UNIX provides consists of a 

number of directories arranged in a tree structure. 

➢ File Group 

❖ A file group is a collection of files that can be located on any server or 

moved between servers while maintaining the same names. 

– A similar construct is used in a UNIX file system. 

– It helps with distributing the load of file serving between several 

servers. 

– File groups have identifiers which are unique throughout the 

system (and hence for an open system, they must be globally 

unique). 

 

To construct globally unique ID we use some unique attribute of the machine on which it 

is created. E.g: IP number, even though the file group may move subsequently. 

 

DFS: Case Studies 

 

▪ NFS (Network File System) 

➢ Developed by Sun Microsystems (in 1985) 

➢ Most popular, open, and widely used. 

➢ NFS protocol standardized through IETF (RFC 1813) 

▪ AFS (Andrew File System) 

➢ Developed by Carnegie Mellon University as part of Andrew distributed 

computing environments (in 1986) 

➢ A research project to create campus wide file system. 

➢ Public domain implementation is available on Linux (LinuxAFS) 

➢ It was adopted as a basis for the DCE/DFS file system in the Open Software 

Foundation (OSF, www.opengroup.org) DEC (Distributed Computing 

Environment 

 

 

 

 

 

 

 

 



  

 

Distributed Systems                                                                                                                                                    Page 121 
 

 

 

Sun Network File System 

 

NFS architecture 

 

Figure 8 shows the architecture of Sun NFS 
 
 

▪ The file identifiers used in NFS are called file handles. 
 
 

 
▪ A simplified representation of the RPC interface provided by NFS version 3 servers is 

shown in Figure 9. 

 

Figure 9. NFS server operations (NFS Version 3 protocol, simplified) 
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▪ NFS access control and authentication 

➢ The NFS server is stateless server, so the user's identity and access rights must be 
checked by the server on each request. 

❖ In the local file system they are checked only on the file’s access 
permission attribute. 

➢ Every client request is accompanied by the userID and groupID 

❖ It is not shown in the Figure 8.9 because they are inserted by the RPC 

system. 

➢ Kerberos has been integrated with NFS to provide a stronger and more 

comprehensive security solution. 

 
▪ Mount service 

➢ Mount operation: 

mount(remotehost, remotedirectory, localdirectory) 
➢ Server maintains a table of clients who have mounted filesystems at that server. 

➢ Each client maintains a table of mounted file systems holding: 
< IP address, port number, file handle> 

➢ Remote file systems may be hard-mounted or soft-mounted in a client computer. 

➢ Figure 10 illustrates a Client with two remotely mounted file stores. 

 
Figure 10. Local and remote file systems accessible on an NFS client 
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▪ Automounter 

➢ The automounter was added to the UNIX implementation of NFS in order to 

mount a remote directory dynamically whenever an ‘empty’ mount point is 

referenced by a client. 

❖ Automounter has a table of mount points with a reference to one or more 

NFS servers listed against each. 

❖ it sends a probe message to each candidate server and then uses the mount 

service to mount the file system at the first server to respond. 

➢ Automounter keeps the mount table small. 

➢ Automounter Provides a simple form of replication for read-only file systems. 

❖ E.g. if there are several servers with identical copies of /usr/lib then each 

server will have a chance of being mounted at some clients. 

▪ Server caching 

➢ Similar to UNIX file caching for local files: 

❖ pages (blocks) from disk are held in a main memory buffer cache until the 

space is required for newer pages. Read-ahead and delayed-write 

optimizations. 

❖ For local files, writes are deferred to next sync event (30 second intervals). 

❖ Works well in local context, where files are always accessed through the 

local cache, but in the remote case it doesn't offer necessary 

synchronization guarantees to clients. 

➢ NFS v3 servers offers two strategies for updating the disk: 

❖ Write-through - altered pages are written to disk as soon as they are 

received at the server. When a write() RPC returns, the NFS client knows 

that the page is on the disk. 

❖ Delayed commit - pages are held only in the cache until a commit() call is 

received for the relevant file. This is the default mode used by NFS v3 

clients. A commit() is issued by the client whenever a file is closed. 

▪ Client caching 

➢ Server caching does nothing to reduce RPC traffic between client and server 

❖ further optimization is essential to reduce server load in large networks. 
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❖ NFS client module caches the results of read, write, getattr, lookup and 

readdir operations 

❖ synchronization of file contents (one-copy semantics) is not guaranteed 

when two or more clients are sharing the same file. 

➢ Timestamp-based validity check 

❖ It reduces inconsistency, but doesn't eliminate it. 

❖ It is used for validity condition for cache entries at the client: 

(T - Tc < t) v (Tmclient = Tmserver) 

 
 

❖ it is configurable (per file) but is typically set to 3 seconds for files and 30 

secs. for directories. 

❖ it remains difficult to write distributed 

applications that share files with NFS. 

❖ Other NFS optimizations 

❖ Sun RPC runs over UDP by default (can use TCP if required). 

❖ Uses UNIX BSD Fast File System with 8-kbyte blocks. 

❖ reads() and writes() can be of any size (negotiated between client and server). 

❖ The guaranteed freshness interval t is set adaptively for individual files to reduce 

getattr() calls needed to update Tm. 

❖ File attribute information (including Tm) is piggybacked in replies to all file 

requests. 

❖ NFS performance 

❖ Early measurements (1987) established that: 

❖ Write() operations are responsible for only 5% of server calls in typical 

UNIX environments. 

❖ hence write-through at server is acceptable. 

❖ Lookup() accounts for 50% of operations -due to step-by-step pathname 
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resolution necessitated by the naming and mounting semantics. 

❖ More recent measurements (1993) show high performance. 

❖ see www.spec.org for more recent measurements. 

❖ NFS summary 

❖ NFS is an excellent example of a simple, robust, high-performance distributed 

service. 

❖ Achievement of transparencies are other goals of NFS: 

❖ Access transparency: 

❖ The API is the UNIX system call interface for both localand 

remote files. 

❖ Location transparency: 

❖ Naming of filesystems is controlled by client mount operations, but 

transparency can be ensured by an appropriate system 

configuration. 

❖ Mobility transparency: 

❖ Hardly achieved; relocation of files is not possible, relocation of 

filesystems is possible, but requires updates to client 

configurations. 

❖ Scalability transparency: 

❖ File systems (file groups) may be subdivided and allocated to 

separate servers. 

❖ Replication transparency: 

– Limited to read-only file systems; for writable files, the SUN 
Network Information Service (NIS) runs over NFS and is used to 

replicate essential system files. 

❖ Hardware and software operating system heterogeneity: 

– NFS has been implemented for almost every known operating 
system and hardware platform and is supported by a variety of 

filling systems. 

❖ Fault tolerance: 

– Limited but effective; service is suspended if a server fails. 

Recovery from failures is aided by the simple stateless design. 
❖ Consistency: 

– It provides a close approximation to one-copy semantics and meets 
the needs of the vast majority of applications. 

– But the use of file sharing via NFS for communication or close 

coordination between processes on different computers cannot be 

http://www.spec.org/
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recommended. 

❖ Security: 

– Recent developments include the option to use a secure RPC 

implementation for authentication and the privacy and security of 

the data transmitted with read and write operations. 

– Efficiency: 

❖ NFS protocols can be implemented for use in situations that 

generate very heavy loads. 

 
Case Study: The Andrew File System (AFS) 

 

AFS differs markedly from NFS in its design and implementation. The differences are primarily 

attributable to the identification of scalability as the most important design goal. AFS is designed 

to perform well with larger numbers of active users than other distributed file systems. The key 

strategy for achieving scalability is the caching of whole files in client nodes. AFS has two 

unusual design characteristics: 

Whole-file serving: The entire contents of directories and files are transmitted to client computers 

by AFS servers (in AFS-3, files larger than 64 kbytes are transferred in 64-kbyte chunks). 

Whole file caching: Once a copy of a file or a chunk has been transferred to a client computer it  

is stored in a cache on the local disk. The cache contains several hundred of the files most 

recently used on that computer. The cache is permanent, surviving reboots of the client  

computer. Local copies of files are used to satisfy clients’ open requests in preference to remote 

copies whenever possible. 

▪ Like NFS, AFS provides transparent access to remote shared files for UNIX programs 

running on workstations. 

▪ AFS is implemented as two software components that exist at UNIX processes called 

Vice and Venus. 

Scenario • Here is a simple scenario illustrating the operation of AFS: 

 

1. When a user process in a client computer issues an open system call for a file in the shared 

-file space and there is not a current copy of the file in the local cache, the server holding the 

file is located and is sent a request for a copy of the file. 

2. The copy is stored in the local UNIX file system in the client computer. The copy is then 

opened and the resulting UNIX file descriptor is returned to the client. 
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3. Subsequent read, write and other operations on the file by processes in the client 

computer are applied to the local copy. 

 

4. When the process in the client issues a close system call, if the local copy has been 

updated its contents are sent back to the server. The server updates the file contents and the 

timestamps on the file. The copy on the client’s local disk is retained in caseisneeded again by 

a user-level process on the same workstation. 

Figure 11. Distribution of processes in the Andrew File System 

 

Workstations Servers 
 

 

 

 

▪ The files available to user processes running on workstations are either local or shared. 

▪ Local files are handled as normal UNIX files. 

▪ They are stored on the workstation’s disk and are available only to local user processes. 

▪ Shared files are stored on servers, and copies of them are cached on the local disks of 

workstations. 

▪ The name space seen by user processes is illustrated in Figure 12. 

Figure 12. File name space seen by clients of AFS 
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▪ The UNIX kernel in each workstation and server is a modified version of BSD UNIX. 

▪ The modifications are designed to intercept open, close and some other file system calls when 

they refer to files in the shared name space and pass them to the Venus process in the client 

computer. (Figure 13) 
 

Figure 13. System call interception in AFS 
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▪ Figure 14 describes the actions taken by Vice, Venus and the UNIX kernel when a user process 

issues system calls. 
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ame in 

Figure 14. implementation of file system calls in AFS 
 

User process UNIX kernel Venus Net Vice 

open(FileNam e, 
mode) 

 

 

 

 

 

 

 

 

 

 

 

 

 

read(FileDesc 

If FileName 
refers to a file  in 
shared file space, 
pass the request to 

Venus. 

 

 

 

 

 

 
Open the local file 
and return the file 
descriptor to the 
application. 

 

 
Check  list of 
files in local 
cache. If not present 
or there is no 
valid callback 
promis,e 
send a request for
 the  file to 
the Vice server that
      is 
custodian of the 
volume containing
 the 
file. 

 
Place the copy of the 
file in the local file 
system, enter 

 

 

 

 

 

 

Transfer a copy of the 

file and a 

callback promiseto 
the workstation. Log 
the callback 
promise. 

r
le
iupnf

t
gf
oet
r
hr
,,)

 Perform a 
normal UNIX 

its local local 
cache the 

 

write(FileDes 

criptor, 

Buffer, 

length) 

read operation on 
the local copy. 

Perform a 
normal 
UNIX write 
operation on the local 
copy. 

list  and 
the local 
to UNIX. 

return name 

close(FileDescriptor) Close the local copy 

a
V
n
e
d
nus   th

n
at
otify tlhocealficleophyashabseen   

closed. 

 

If the 

copy to the Vice server 

b
se
e
n
e
d
n 

a 
changed, 

that is the custodian of the file. 
Replace the file 
contents and send a 
callback to all other clients 
holdin gca llback 
promiseson the file. 

 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 



  

 

Distributed Systems Page 128  

▪ Figure 15 shows the RPC calls provided by AFS servers for operations on files. 

 
Figure 15. The main components of the Vice service interface 

 

 

Other aspects 

AFS introduces several other interesting design developments and refinements 

that we outline here, together with a summary of performance evaluation 

results: 

1. UNIX kernel modifications 

2. Location database 

3. Threads 

4. Read-only replicas 

5. Bulk transfers 

6. Partial file caching 

7. Performance 

8. Wide area support 

Naming Services 

Which one is easy for humans and machines? and why? 

74.125.237.83 or google.com 

 128.250.1.22 or distributed systems 

website 128.250.1.25 or Prof. Buyya 

 Disk 4, Sector 2, block 5 OR /usr/raj/hello.c 

 

Introduction 

 In a distributed system, names are used to refer to a wide variety of resources such as: 

 Computers, services, remote objects, and files, as well as users. 

 Naming is fundamental issue in DS design as it facilitates communication and 

resource sharing. 

 A name in the form of URL is needed to access a specific web page. 

 Processes cannot share particular resources managed by a computer 
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system unless they can name them consistently 

 Users cannot communicate within one another via a DS unless they can 

name one another, with email address. 

 Names are not the only useful means of identification: descriptive attributes are another. 

 

What are Naming Services? 

 How do Naming Services facilitate communication and resource sharing? 

– An URL facilitates the localization of a resource exposed on the Web. 

 e.g., abc.net.au means it is likely to be an Australian entity? 

– A consistent and uniform naming helps processes in a distributed 

system to interoperate and manage resources. 

 e.g., commercials use .com; non-profit organizations use .org 

– Users refers to each other by means of their names (i.e. email) rather 

than their system ids 

– Naming Services are not only useful to locate resources but also to 

gather additional information about them such as attributes 

What are Naming Services? 

In a Distributed System, a Naming Service is a specific service whose aim is to provide a 

consistent and uniform naming of resources, thus allowing other programs or services to 

localize them and obtain the required metadata for interacting with them. 

Key benefits 

– Resource localization 

– Uniform naming 

– Device independent address (e.g., you can move domain name/web site 

from one server to another server seamlessly). 

The role of names and name services 

 Resources are accessed using identifier or reference 

– An identifier can be stored in variables and retrieved from tables quickly 

– Identifier includes or can be transformed to an address for anobject 

 E.g. NFS file handle, Corba remote object reference 

– A name is human-readable value (usually a string) that can be 
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resolved to an identifier or address 

 Internet domain name, file pathname, process number 

 E.g ./etc/passwd, http://www.cdk3.net/ 

 For many purposes, names are preferable to identifiers 

– because the binding of the named resource to a physical location is 

deferred and can be changed 

– because they are more meaningful to users 

 Resource names are resolved by name services 

– to give identifiers and other useful attributes 

Requirements for name spaces 

 Allow simple but meaningful names to be used 

 Potentially infinite number of names 

 Structured 

– to allow similar subnames without clashes 

– to group related names 

 Allow re-structuring of name trees 

– for some types of change, old programs should continue to work 

 Management of trust 

 
Composed naming domains used to access a resource from a URL 

A key attribute of an entity that is usually relevant in a distributed system is its  address. For example: 

• The DNS maps domain names to the attributes of a host computer: its IP address, the type of entry 

http://www.cdk3.net/
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(for example, a reference to a mail server or another host) and, for example, the length of time the 

host’s entry will remain valid. 

• The X500 directory service can be used to map a person’s name onto attributes including their email 

address and telephone number. 

• The CORBA Naming Service maps the name of a remote object onto its remote object reference, 

whereas the Trading Service maps the name of a remote object onto its remote object reference, 

together with an arbitrary number of attributes describing the object in terms understandable by human 

users. 

Name Services and the Domain Name System 

 A name service stores a collection of one or more naming contexts, sets of bindings between 

textual names and attributes for objects such as computers, services, and users. 

 The major operation that a name service supports is to resolve names. 

Uniform Resource Identifiers 

 

Uniform Resource Identifiers (URIs) came about from the need to identify resources on the Web, and 

other Internet resources such as electronic mailboxes. An important goal was to identify resources in a 

coherent way, so that they could all be processed by common software such as browsers. URIs are 

‘uniform’ in that their syntax incorporates that of indefinitely many individual types of resource 

identifiers (that is, URI schemes), and there are procedures for managing the global namespace of 

schemes. The advantage of uniformity is that it eases the process of introducing new types of identifier, 

as well as using existing types of identifier in new contexts, without disrupting existing usage. 

Uniform Resource Locators: Some URIs contain information that can be used to locate and access a 

resource; others are pure resource names. The familiar term Uniform Resource Locator (URL) is often 

used for URIs that provide location information and specify the method for accessing the resource. 

Uniform Resource Names: Uniform Resource Names (URNs) are URIs that are used as pure resource 

names rather than locators. For example, the URI: 

mid:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com 

Navigation 

Navigation is the act of chaining multiple Naming Services in order to resolve a single name to the 

corresponding resource. 

 Namespaces allows for structure in names. 

 URLs provide a default structure that decompose the location of a resource in 

mailto:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com
mailto:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com
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– protocol used for retrieval 

– internet end point of the service exposing the resource 

– service specific path 

 This decomposition facilitates the resolution of the name into the corresponding resource 

 Moreover, structured namespaces allows for iterative navigation… 

Iterative navigation 

Reason for NFS iterative name resolution 

This is because the file service may encounter a symbolic link (i.e. an alias) when resolving a name. A 

symbolic link must be interpreted in the client’s file system name space because it may point to a file in 

a directory stored at another server. The client computer must determine which server this is, because 

only the client knows its mount points 

 

Server controlled navigation 

 In an alternative model, name server coordinates naming resolution and returns the results to the 

client. It can be: 

– Recursive: 

 it is performed by the naming server 

 the server becomes like a client for the next server 

 this is necessary in case of client connectivity constraints 

– Non recursive: 

 it is performed by the client or the first server 

 the server bounces back the next hop to its client 

 

Non-recursive and recursive server-controlled navigation 
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DNS offers recursive navigation as an option, but iterative is the standard technique. 

Recursive navigation must be used in domains that limit client access to their DNS 

information for security reasons. 

 

 

 
 

 

 

7. Application 

The Domain Name System is a name service design whose main  naming database is used across 

the Internet. 

This original scheme was soon seen to suffer from three major shortcomings: 

• It did not scale to large numbers of computers. 

• Local organizations wished to administer their own naming systems. 

• A general name service was needed – not one that serves only for looking up 
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computer addresses. 

Domain names • The DNS is designed for use in multiple implementations, each of 

which may have its own name space. In practice, however, only one is in widespread use, 

and that is the one used for naming across the Internet. The Internet DNS name space is 

partitioned both organizationally and according to geography. The names are written with 

the highest-level domain on the right. The original top-level organizational domains (also 

called generic domains) in use across the Internet were: 

com – Commercial organizations 

edu – Universities and other educational institutions 

gov – US governmental agencies 

mil – US military organizations 

net – Major network support centres 

org – Organizations not mentioned above 

int – International organizations 

New top-level domains such as biz and mobi have been added since the early 2000s. A 

full list of current generic domain names is available from the Internet Assigned Numbers 

Authority [www.iana.org I]. In addition, every country has its own domains: 

us – United States 

uk – United Kingdom 

fr – France 

DNS - The Internet Domain Name System 

 A distributed naming database (specified in RFC 1034/1305) 

 Name structure reflects administrative structure of the Internet 

 Rapidly resolves domain names to IP addresses 

– exploits caching heavily 

– typical query time ~100 milliseconds 

 Scales to millions of computers 

– partitioned database 

– caching 

– Resilient to failure of a server 

– Replication 

http://www.iana.org/
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Basic DNS algorithm for name resolution (domain name -> IP number) 

• Look for the name in the local cache 

• Try a superior DNS server, which responds with: 

– another recommended DNS server 

– the IP address (which may not be entirely up to date) 

DNS name servers: Hierarchical organisation 

Note: Name server names are in italics, and the corresponding domains are in 

parentheses. Arrows denote name server entries 

 

 

DNS in typical operation 

 

DNS server functions and configuration 

 

 Main function is to resolve domain names for computers, i.e. to get  their IP addresses 

– caches the results of previous searches until they pass their   'time to live' 
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 Other functions: 

– get mail host for a domain 

– reverse resolution - get domain name from IP address 

– Host information - type of hardware and OS 

– Well-known services - a list of well-known services offered by a host 

– Other attributes can be included (optional) 

 

DNS resource records 

The DNS architecture allows for recursive navigation as well as iterative navigation. The resolver 

specifies which type of navigation is required when contacting a name server. However, 

name servers are not bound to implement recursive navigation. As was pointed out above, recursive 

navigation may tie up server threads, meaning that other requests might be delayed. 

 

 
The data for a zone starts with an SOA-type record, which contains the zone parameters that specify, 

for example, the version number and how often secondaries should refresh their copies. This is 

followed by a list of records of type NS specifying the name servers for the domain and a list of records 

of type MX giving the domain names of mail hosts, each prefixed by a number expressing its 

preference. For example, part of the database for the domain dcs.qmul.ac.uk at one point is shown in 

the following figure where the time to live 1D means 1 day. 
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The majority of the remainder of the records in a lower-level zone like dcs.qmul.ac.uk 

will be of type A and map the domain name of a computer onto its IP address. They may 

contain some aliases for the well-known services, for example: 

 
 

 
If the domain has any subdomains, there will be further records of type NS specifying 

their name servers, which will also have individual A entries. For example, at one point 

the database for qmul.ac.uk contained the following records for the name servers in its 

subdomain 

dcs.qmul.ac.uk: 

 
DNS issues 

 

 Name tables change infrequently, but when they do, caching can result in the 

delivery of stale data. 

– Clients are responsible for detecting this and recovering 

 Its design makes changes to the structure of the name space difficult. For example: 

– merging previously separate domain trees under a new root 

– moving subtrees to a different part of the structure (e.g. if Scotland 

became a separate country, its domains should all be moved to a new 

country-level domain.) 

 Directory service: 'yellow pages' for the resources in a 

network Retrieves the set of names that satisfy a 

given description 

– e.g. X.500, LDAP, MS Active Directory Services 
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– 

- 

 (DNS holds some descriptive data, but: 

• the data is very incomplete 

DNS isn't organised to search it) 

 Discovery service:- a directory service that also: 

is automatically updated as the network configuration 

changes meets the needs of clients in spontaneous 

networks (Section 2.2.3) 

discovers services required by a client (who may be mobile) within the 

current scope, for example, to find the most suitable printing service for 

image files after arriving at a hotel. 

Examples of discovery services: Jini discovery service, the 'service 

location protocol', the 'simple service discovery protocol' (part of 

UPnP), the 'secure discovery service'.– 

 
 

– 
 

 

 

 

 

 

 

 

 

 

 

  

The name services store collections of <name, attribute> pairs, and how the attributes  are looked up 

from a name. It is natural to consider the dual of this arrangement, in which attributes are used as 

values to be looked up. In these services, textual names can be considered to be just another attribute. 

Sometimes users wish to find a particular person or resource, but they do not know its name, only some 

of its other attributes. 

For example, a user may ask: ‘What is the name of the user with telephone number 020-555 9980?’ 

Likewise, sometimes users require a service, but they are not concerned with what system entity 

supplies that service, as long as the service is conveniently accessible. 

For example, a user might ask, ‘Which computers in this building are Macintoshes running the Mac OS 
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X operating system?’ or ‘Where can I print a high-resolution colour image?’ 

A service that stores collections of bindings between names and attributes and that looks up entries that 

match attribute-based specifications is called a directory service. 

Examples are Microsoft’s Active Directory Services, X.500 and its cousin LDAP, Univers and Profile. 

Directory services are sometimes called yellow pages services, and conventional name services are 

correspondingly called white pages services, in an analogy with the traditional types of telephone 

directory. Directory services are also sometimes known as attribute-based name services. 

A directory service returns the sets of attributes of any objects found to match some specified 

attributes. So, for example, the request ‘TelephoneNumber = 020 5559980’ might return {‘Name = 

John Smith’, ‘TelephoneNumber = 020 555 9980’, ‘emailAddress = john@dcs.gormenghast.ac.uk’, 

...}. 

The client may specify that only a subset of the attributes is of interest – for example, just the email 

addresses of matching objects. X.500 and some other directory services also allow objects to be looked 

up by conventional hierarchic textual names. The Universal Directory and Discovery Service (UDDI), 

which was presented in Section 9.4, provides both white pages and yellow pages services to provide 

information about organizations and the web services they  offer. 

UDDI aside, the term discovery service normally denotes the special case of a directory service for 

services provided by devices in a spontaneous networking environment. As Section 1.3.2 described, 

devices in spontaneous networks are liable to connect and disconnect unpredictably. One core 

difference between a discovery service and other directory services is that the address of a directory 

service is normally well known and preconfigured in clients, whereas a device entering a spontaneous 

networking environment has to resort to multicast navigation, at least the first time it accesses the local 

discovery service. 

Attributes are clearly more powerful than names as designators of objects: programs can be written to 

select objects according to precise attribute specifications where names might not be known. Another 

advantage of attributes is that they do not expose the structure of organizations 

to the outside world, as do organizationally partitioned names. However, the relative simplicity of use 

of textual names makes them unlikely to be replaced by attribute-based naming in many applications. 

Discovery service 

• A database of services with lookup based on 

service description or type, location and 

mailto:john@dcs.gormenghast.ac.uk
mailto:john@dcs.gormenghast.ac.uk
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other criteria, E.g. 

1. Find a printing service in 

this hotel compatible with a 

Nikon camera 

2. Send the video from my camera to the digital TV in my room. 

• Automatic registration of new services 

• Automatic connection of guest's clients to the discovery service 

Global Name Service (GNS) 

 Designed and implemented by Lampson and colleagues at the DEC Systems 

Research Center (1986) 

 Provide facilities for resource location, email addressing and authentication 

 When the naming database grows from small to large scale, the structure of 

name space may change 

the service should accommodate it 

 Cache consistency ? 

The GNS manages a naming database that is composed of a tree of directories holding names and 

values. Directories are named by multi-part pathnames referred to a root, or relative to a working 

directory, much like file names in a UNIX file system. Each directory is also assigned an integer, 

which serves as a unique directory identifier (DI). A directory contains a list of names and 

references. The values stored at the leaves of the directory tree are organized into value trees, so 

that the attributes associated with names can be structured values. 

Names in the GNS have two parts: <directory name, value name>. The first part identifies a 

directory; the second refers to a value tree, or some portion of a value tree. 

GNS Structure 

 Tree of directories holding names and values 

 Muti-part pathnames refer to the root or relative working directory (like Unix file system) 

 Unique Directory Identifier (DI) 

 A directory contains list of names and references 

 Leaves of tree contain value trees (structured values) 

 

GNS directory tree and value tree 
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Accommodating changes 

 

 How to integrate naming trees of two previously separate GNS services 

 But what is for ‘/UK/AC/QMV, Peter.Smith’ ? 
 
 

Using DI to solve changes 

 

 Using the name ‘#599/UK/AC/QMV, Peter.Smith’ 
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Restructuring of 

database 

 

 Using symbolic links 
 

 

X500 Directory Service 

 

X.500 is a directory service used in the same way as a conventional name service, but it is primarily 

used to satisfy descriptive queries and is designed to discover the names and attributes of other users 

or system resources. Users may have a variety of requirements for searching and browsing in a 

directory of network users, organizations and system resources to obtain information about the entities 

that the directory contains. The uses for such a service are likely to be quite diverse. They range from 

enquiries that are directly analogous to the use of telephone directories, such as a simple ‘white pages’ 

access to obtain a user’s electronic mail address or a ‘yellow pages’ query aimed, for example, at 

obtaining the names and telephone numbers of garages specializing in the repair of a particular make 

of car, to the use of the directory to access personal details such as job roles, dietary habits or even 

photographic images of the individuals. 

 Standard of ITU and ISO organizations 

 Organized in a tree structure with name nodes as in the case of other name servers 
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 A wide range of attributes are stored in each node 

 Directory Information Tree (DIT) 

 Directory Information Base (DIB) 

 

X.500 service architecture 

The data stored in X.500 servers is organized in a tree structure with named nodes, as in the case of 

the other name servers discussed in this chapter, but in X.500 a wide range of attributes are stored at 

each node in the tree, and access is possible not just by name but also by searching for entries with any 

required combination of attributes. The X.500 name tree is called the Directory Information Tree 

(DIT), and the entire directory structure including the data associated with the nodes, is called the 

Directory Information Base (DIB). There is intended to be a single integrated DIB containing 

information provided by organizations throughout the world, with portions of the DIB located in 

individual X.500 servers. Typically, a medium-sized or large organization would provide at least one 

server. Clients access the directory by establishing a connection to a server and issuing access 

requests. Clients can contact any server with an enquiry. If the data required are not in the segment of 

the DIB held by the contacted server, it will either invoke other servers to resolve the query or redirect 

the client to another server. 

 Directory Server Agent (DSA) 

 Directory User Agent (DUA) 

 

 
In the terminology of the X.500 standard, servers are Directory Service Agents (DSAs), and their 

clients are termed Directory User Agents (DUAs). Each entry in the DIB consists of a name and  a set 

of attributes. As in other name servers, the full name of an entry corresponds to a path through the DIT 

from the root of the tree to the entry. In addition to full or absolute names, a DUA can establish a 

context, which includes a base node, and then use shorter relative names that give the path from the 

base node to the named entry. 
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An X.500 DIB Entry 

 
 
 

Part of the X.500 Directory Information Tree 

The data structure for the entries in the DIB and the DIT is very flexible. A DIB entry consists of a set 

of attributes, where an attribute has a type and one or more values. The type of each attribute is 

denoted by a type name (for example, countryName, organizationName, commonName, 

telephoneNumber, mailbox, objectClass). New attribute types can be defined if they are required. For 

each distinct type name there is a corresponding type definition, which includes a type description and 

a syntax definition in the ASN.1 notation (a standard notation for syntax definitions) defining 

representations for all permissible values of the type. 

 

DIB entries are classified in a manner similar to the object class structures found in object- oriented 

programming languages. Each entry includes an objectClass attribute, which determines the class (or 

classes) of the object to which an entry refers. Organization, organizationalPerson and document are 

all examples of objectClass values. Further classes can be defined as they are required. The definition 

of a class determines which attributes are mandatory and which are optional for entries of the given 

class. The definitions of classes are organized in an inheritance hierarchy in which all classes except 

one (called topClass) must contain an objectClass attribute, and the value of the objectClass attribute 

must be the names of one or more classes. If there are several objectClass values, the object inherits 

the mandatory and optional attributes of each of the classes. 
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Administration and updating of the DIB • The DSA interface includes operations for adding, 

deleting and modifying entries. Access control is provided for both queries and updating operations, 

so access to parts of the DIT may be restricted to certain users or classes of user 

Lightweight Directory Access Protocol • X.500’s assumption that organizations would provide 

information about themselves in public directories within a common system has proved largely 

unfounded. group at the University of Michigan proposed a more lightweight approach called the 

Lightweight Directory Access Protocol (LDAP), in which a DUA accesses X.500 directory services 

directly over TCP/IP instead of the upper layers of the ISO protocol stack. 

DISTRIBUTED SHARED MEMORY 
 

Distributed shared memory (DSM) is an abstraction used for sharing data between computers that do 

not share physical memory. Processes access DSM by reads and updates to what appears to be 

ordinary memory within their address space. However, an underlying runtime system ensures 

transparently that processes executing at different computers observe the updates made by one 

another. 

The main point of DSM is that it spares the programmer the concerns of message passing when 

writing applications that might otherwise have to use it. DSM is primarily a tool for parallel 
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applications or for any distributed application or group of applications in which individual shared 

data items can be accessed directly. DSM is in general less appropriate in client-server systems, 

where clients normally view server-held resources as abstract data and access them by request(for 

reasons of modularity and protection). 

 

Message passing cannot be avoided altogether in a distributed system: in the absence  if physically 

shared memory, the DSM runtime support has to send updates in messages between computers. DSM 

systems manage replicated data: each computer has a local copy of recently accessed data items stored 

in DSM, for speed of access. 

In distributed memory multiprocessors and clusters of off-the-shelf computing components (see 

Section 6.3), the processors do not share memory but are connected by a very high-speed network. 

These systems, like general-purpose distributed systems, can scale to much greater numbers of 

processors than a shared-memory multiprocessor’s 64 or so. A central question that has been pursued 

by the DSM and multiprocessor research communities is whether the investment in knowledge of 

shared memory algorithms and the associated software can be directly transferred to a more scalable 

distributed memory architecture. 

Message passing versus DSM 

As a communication mechanism, DSM is comparable with message passing rather than with request-

reply-based communication, since its application to parallel processing, in particular, entails the use of 

asynchronous communication. The DSM and message passing approaches to programming can be 
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contrasted as follows: 

Programming model: 

Under the message passing model, variables have to be marshalled from one process, transmitted and 

unmarshalled into other variables at the receiving process. By contrast, with shared memory 

the processes involved share variables directly, so no marshalling is necessary – even of pointers to 

shared variables – and thus no separate communication operations are necessary. 

Efficiency : 

Experiments show that certain parallel programs developed for DSM can be made to perform about as 

well as functionally equivalent programs written for message passing platforms on the same hardware – 

at least in the case of relatively small numbers of computers (ten or so). However, this result cannot be 

generalized. The performance of a program based on DSM depends upon many factors, as we shall 

discuss below – particularly the pattern of data sharing. Implementation approaches to DSM 

Distributed shared memory is implemented using one or a combination of specialized hardware, 

conventional paged virtual memory or middleware: 

Hardware:Shared-memory multiprocessor architectures based on a NUMA architecture rely on specialized 

hardware to provide the processors with a consistent view of shared memory. They handle 

memory LOAD and STORE instructions by communicating with remote memory and cache modules as 

necessary to store and retrieve data. 

Paged virtual memory: 

Many systems, including Ivy and Mether , implement DSM as a region of virtual 

memory occupying the same address range in the address space of every 

participating process. #include "world.h" 

struct shared { int 

a, b; }; Program 

Writer: 

main() 

{ 

struct shared *p; 

methersetup(); /* Initialize the Mether 
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runtime */ p = (struct shared 

*)METHERBASE; 

/* overlay structure on METHER 

segment */  

 

p->a = p->b = 0; /* initialize fields to 

zero */ 

while(TRUE){ /* continuously update structure 

fields */ p –>a = p –>a + 1; 

p –>b = p –>b - 1; 

} 

} 

Program Reader: 

main() 

{ 

struct shared *p; 

methersetup(); 

p = (struct shared *)METHERBASE; 

while(TRUE){ /* read the fields once every second */ 

printf("a = %d, b = %d\n", p –>a, p –>b); 

sleep(1); 

} 

} 

 
Middleware: 

Some languages such as Orca, support forms of DSM without  any hardware or paging support, in a 

platform-neutral way. In this type of implementation, sharing is implemented by communication 

between instances of the user-level support layer in clients and  servers. Processes make calls to this 

layer when they access data items in DSM. The instances of this layer at the different computers 

access local data items and communicate as necessary to maintain consistency. 
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Design and implementation issues 

The synchronization model used to access DSM consistently at the application level; the DSM 

consistency model, which governs the consistency of data values accessed from different computers; 

the update options for communicating written values between computers; the granularity of sharing in 

a DSM implementation; and the problem of thrashing. 

Structure 

A DSM system is just such a replication system. Each application process is presented with some 

abstraction of a collection of objects, but in this case the ‘collection’ looks more or less like memory. 

That is, the objects can be addressed in some fashion or other. Different approaches to DSM vary in 

what they consider to be an ‘object’ and in how objects are addressed. We consider three approaches, 

which view DSM as being composed respectively of contiguous bytes, language-level objects or 

immutable data items. 

Byte-oriented 

This type of DSM is accessed as ordinary virtual memory – a contiguous array of bytes. It is the 

view illustrated above by the Mether system. It is also the view of many other DSM systems, 

including Ivy.It allows applications (and language implementations) to impose whatever data 

structures they want on the shared memory. The shared objects are directly addressible memory 

locations (in practice, the shared locations may be multi-byte words rather than individual bytes). The 

only operations upon those objects are read (or LOAD) and write (or STORE). If x and y are two 

memory locations, then we denote instances of these operations as follows: 

Object-oriented 

The shared memory is structured as a collection of language-level objects with higher-level semantics 

than simple read / write variables, such as stacks and dictionaries. The contents of the shared memory 

are changed only by invocations upon these objects and never by direct access to their member 

variables. An advantage of viewing memory in this way is that object semantics can be utilized when 

enforcing consistency. 

Immutable data 

When reading or taking a tuple from tuple space, a process provides a tuple specification 

and the tuple space returns any tuple that matches that specification – this is a type of  
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associative addressing. To enable processes to synchronize their activities, the read and take 

operations both block until there is a matching tuple in the tuple space. 

Synchronization model 

Many applications apply constraints concerning the values stored in shared memory. This is as true of 

applications based on DSM as it is of applications written for sharedmemory multiprocessors (or 

indeed for any concurrent programs that share data, such as operating system kernels and multi-

threaded servers). For example, if a and b are two variables stored in DSM, then a constraint might be 

that a=b always. If two or moreprocesses execute the following code: 

a:= a + 1; 

b := b + 1; 

then an inconsistency may arise. Suppose a and b are initially zero and that process 1gets as far as 

setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 1. 

Consistency model 

The local replica manager is implemented by a combination of middleware (the DSM runtime layer in 

each process) and the kernel. It is usual for middleware to perform the majority of DSM processing. 

Even in a page-based DSM implementation, the kernel usually provides only basic page mapping, 

page-fault handling and communication mechanisms and middleware is 

responsible for implementing the page-sharing policies. If DSM segments are persistent, then one or 

more storage servers (for example, file servers) will also act as replica managers. 
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Sequential consistency 

 

A DSM system is said to be sequentially consistent if for any execution there is  some interleaving of 

the series of operations issued by all the processes that satisfies the following two criteria: 

SC1: The interleaved sequence of operations is such that if R(x) a occurs in the  sequence, then 

either the last write operation that occurs before it in the interleaved sequence is W(x) a, or no write 

operation occurs before it and a is the initial value of x. 

SC2: The order of operations in the interleaving is consistent with the program order in which 

each individual client executed them. 

Coherence 

Coherence is an example of a weaker form of consistency. Under coherence, every process agrees on 

the order of write operations to the same location, but they do not necessarily agree on the ordering of 

write operations to different locations. We can think of coherence as sequential consistency on a 

locationby- location basis. Coherent DSM can be implemented by taking a protocol for implementing 
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sequential consistency and applying it separately to each unit of replicated data – for example, each 

page. 

Weak consistency 

This model exploits knowledge of synchronization operations in order to relax memory consistency, 

while appearing to the programmer to implement sequential consistency (at least, under certain 

conditions that are beyond the scope of this book). For example, if the programmer uses a lock to 

implement a critical section, then a DSM system can assume that no other process may access the data 

items accessed under mutual exclusion within it. It is therefore redundant for the DSM system to 

propagate updates to these items until the process leaves the critical section. While items are left with 

‘inconsistent’ values some of the time, they are not accessed at those points; the execution appears to 

be sequentially consistent. 

Update options 

Two main implementation choices have been devised for propagating updates made by one process to 

the others: write-update and write-invalidate. These are applicable to a variety of DSM consistency 

models, including sequential consistency. In outline, the options are as follows: 

Write-update: The updates made by a process are made locally and multicast to all other replica 

managers possessing a copy of the data item, which immediately modify the data read by local 

processes. Processes read the local copies of data items, without the need for communication. In 

addition to allowing multiple readers, several processes may write the same data item at the same time; 

this is known as multiple-reader/multiple-writer sharing. 
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Write-invalidate: This is commonly implemented in the form of multiple-reader/ single-writer sharing. 

At any time, a data item may either be accessed in read-only mode by one or more processes, or it may 

be read and written by a single process. An item that is currently accessed in read-only mode can be 

copied indefinitely to other processes. When a process attempts to write to it, a multicast message is 

first sent to all other copies to invalidate them and this is acknowledged before the write can take 

place; the other processes are thereby prevented from reading stale data (that is, data that are not up to 

date). Any processes attempting to access the data item are blocked if a writer exists. 

Granularity 

An issue that is related to the structure of DSM is the granularity of sharing. Conceptually, all 

processes share the entire contents of a DSM. As programs sharing DSM execute, however, only 

certain parts of the data are actually shared and then only for certain times during the execution. It 

would clearly be very wasteful for the DSM implementation always to transmit the entire contents of 

DSM as processes access and update it. 

Thrashing 

A potential problem with write-invalidate protocols is thrashing. Thrashing is said to  occur where the 

DSM runtime spends an inordinate amount of time invalidating and  transferring shared data 

compared with the time spent by application processes doing useful work. It occurs when several 

processes compete for the same data item, or for falsely shared data items. 

CONSISTENCY MODELS 
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Models of memory consistency can be divided into uniform models, which do not distinguish between 

types of memory access, and hybrid models, which do distinguish between ordinary and 

synchronization accesses (as well as other types of access). 

Other uniform consistency models include: 

Causal consistency: Reads and writes may be related by the happened-before relationship . This is 

defined to hold between memory operations when either (a) they are made by the same process; (b) a 

process reads a value written by another process; or (c) there exists a sequence of such operations 

linking the two operations. The model’s constraint is that the value returned by a read must be 

consistent with the happened-before relationship. 

Processor consistency: The memory is both coherent and adheres to the pipelined RAM model (see 

below). The simplest way to think of processor consistency is that the memory is coherent and that all 

processes agree on the ordering of any two write accesses made by the same process that is, they agree 

with its program order. 
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UNIT-V 

. 

Transactions and Concurrency control: Introduction, Transactions, Nested Transactions, Locks, optimistic 

concurrency control, Timestamp ordering, Comparison of methods for concurrency control. 

Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic commit 

protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery 

Introduction 

The goal of transactions is to ensure that all of the objects managed by a server remainin a consistent state 

when they are accessed by multiple transactions and in the presenceof server crashes Objects that can be 

recovered after their server crashes are called recoverableobjects. In general, the objects managed by a 

server may be stored in volatile memory(for example, RAM) or persistent memory (for example, a hard 

disk). Even if objectsare stored in volatile memory, the server may use persistent memory to store 

sufficientinformation for the state of the objects to be recovered if the server process crashes. This enables 

servers to make objects recoverable. A transaction is specified by a client as aset of operations on objects 

tobe performed as an indivisible unit by the servers 

managing those objects. The servers must guarantee that either the entire transaction is 

carried out and the results recorded in permanent storage or, in the case that one or more 

of them crashes, its effects are completely erased. The next chapter discusses issues 

related to transactions that involve several servers, in particular how they decide on the 

outcome of a distributed transaction. 

Simple synchronization (without transactions) 

One of the main issues of this chapter is that unless a server is carefully designed, its operations performed 

on behalf of different clients may sometimes interfere with one another. Such interference may result in 

incorrect values in the objects. In this section,we discuss how client operations may be synchronized without 

recourse to transactions. 

Atomic operations at the server • 

multiple threads is beneficial to performance in many servers. We have also noted that the use of 

threads allows operations from multiple clients to run concurrently and possibly access the same 

objects. Therefore, the methods of objects should be designed for use in a multi-threaded context. 
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For example, if the methods deposit and withdraw are not designed for use in a multi-threaded 

program, then   it is possible that theservers managing those objects. The servers must guarantee 

that either the entire transaction is carried out and the results recorded in permanent storage or, in 

the case that one or more of them crashes, its effects are completely erased. The next chapter 

discusses issues related to transactions that involve several servers, in particular how they decide 

on the outcome of a distributed transaction. 

Simple synchronization (without transactions) 

One of the main issues of this chapter is that unless a server is carefully designed, its operations 

performed on behalf of different clients may sometimes interfere with one another. Such 

interference may result in incorrect values in the objects. In this section, we discuss how client 

operations may be synchronized without recourse to transactions. 

Atomic operations at the server • 

multiple threads is beneficial to performance in many servers. We have also noted that 

the use of threads allows operations from multiple clients to run concurrently and possibly access 

the same objects. Therefore, the methods of objects should be designed for use in a multi-threaded 

context. For example, if the methods deposit and withdraw are not designed for use in a multi-

threaded program, then it is possible that the actions of two or more concurrent executions of the 

method could be interleaved arbitrarily and have strange effects on the instance variables of the 

account objects. 

Figure 16.1 Operations of the Account interface 

deposit(amount) 

deposit amount in the account 

withdraw(amount) 

withdraw amount from the account 

getBalance()-> amount 

return the balance of the account 

setBalance(amount) 

set the balance of the account to amount 

Operations of the Branch interface 

create(name)-> account 
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create a new account with a given name 

lookUp(name)-> account 

return a reference to the account with the given name 

branchTotal()-> amount 

return the total of all the balances at the branch 

the synchronized keyword, which can be applied to methods in Java to ensure that only one thread at a time 

can access an object. In our example, the class that implements the Account interface will be able to declare 

the 

methods as synchronized. For example: 

public synchronized void deposit(int amount) throws RemoteException{ 

// adds amount to the balance of the account 

} 

If one thread invokes a synchronized method on an object, then that object is effectively locked, and 

another thread that invokes one of its synchronized methods will be blocked until the lock is released. 

Thisformof synchronization forces theserversmanaging those objects. The servers must guarantee that 

either the entire transaction is carried out and the results recorded in permanent storage or, in the case that 

one or more of them crashes, its effects are completely erased. The next chapter discusses issues 

related to transactions that involve several servers, in particular how they decide on the outcome of a 

distributed transaction. 

Simple synchronization (without transactions) 

One of the main issues of this chapter is that unless a server is carefully designed, its operations performed 

on behalf of different clients may sometimes interfere with one another. Such interference may result in 

incorrect values in the objects. In this section,we discuss how client operations may be synchronized 

without recourse to transactions. 

Atomic operations at the server • 

multiple threads is beneficial to performance in many servers. We have also noted that 

the use of threads allows operations from multiple clients to run concurrently and possibly access the same 

objects. Therefore, the methods of objects should be designed for use in a multi-threaded context. For 

example, if the methods deposit and withdraw are not designed for use in a multi-threaded program, then it 

is possible that the actions of two or more concurrent executions of the method could be interleaved 
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arbitrarily and have strange effects on the instance variables of the account objects. 

Figure 16.1 Operations of the Account interface 

deposit(amount) 

deposit amount in the account 

withdraw(amount) 

withdraw amount from the account 

getBalance()-> amount 

return the balance of the account 

setBalance(amount) 

set the balance of the account to amount 

Operations of the Branch interface 

create(name)-> account 

create a new account with a given name 

lookUp(name)-> account 

return a reference to the account with the given name 

branchTotal()-> amount 

return the total of all the balances at the branch 

the synchronized keyword, which can be applied to methods in Java to ensure that only one thread at a time 

can access an object. In our example, the class that implements the Account interface will be able to 

declare the 

methods as synchronized. For example: 

public synchronized void deposit(int amount) throws RemoteException{ 

// adds amount to the balance of the account 

} 

If one thread invokes a synchronized method on an object, then that object is effectively locked, and 

another thread that invokes one of its synchronized methods will be blocked until the lock is released. This 

form of synchronization forces the execution of threads to be separated in time and ensures that the 

instance variables of a single object are accessed in a consistent manner. Without synchronization, two 

separate deposit invocations might read the balance before either has incremented it – resulting in an 

incorrect value. Any method that accesses an instance variable that can vary should be synchronized. 
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Operations that are free from interference from concurrent operations being performed in other threads are 

called atomic operations. The use of synchronized methods in Java is one way of achieving atomic 

operations. But in other programming environments for multi-threaded servers the operations on objects 

still need to have atomic operations in order to keep their objects consistent. This may be achieved by the 

use of any available mutual exclusion mechanism, such as a mutex.Enhancing client cooperation by 

synchronization of server operations • 

 Clients may use  a server as a means of sharing some resources. This is achieved by some clients using 

operations to update the server’s objects and other clients using operations to access them. The above 

scheme for synchronized access to objects provides all that is required in many applications – it prevents 

threads interfering with one another. However, some applications require a way for threads to 

communicate with each other. 

For example, a situation may arise in which the operation requested by one client cannot be completed 

until an operation requested by another client has been performed. This can happen when some clients are 

producers and others are consumers – the consumers may have to wait until a producer has supplied some 

more of the commodity 

in question. It can also occur when clients are sharing a resource – clients needing the resource may have to 

wait for other clients to release it.  The Java wait and notify methods  allow threads to communicate with 

one another in a manner that solves the above problems. They must be used within synchronized methods 

of an object. A thread calls wait on an object so as to suspend itself and to allow another thread to execute 

a method of that object. A 

thread calls notify to inform any thread waiting on that object that it has changed some of its data. Access 

to an object is still atomic when threads wait for one another: a thread that calls wait gives up its lock and 

suspends itself as a single atomic action; when a thread is restarted after being notified it acquires a new 

lock on the object and resumes execution from after its wait. A thread that calls notify (from within a 

synchronized method) completes the execution of that method before releasing the lock on the object. 

Consider the implementation of a shared Queue object with two methods: first  removes and returns the 

first object in the queue, and append adds a given object to the end of the queue. The method first will test 

whether the queue is empty, in which case it will call wait on the queue. If a client invokes first when the 

queue is empty, it will not get a reply until another client has added something to the queue – the append 

operation will call notify when it has added an object to the queue. This allows one of the threads waiting 

on the queue object to resume and to return the first object in the queue to its 
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client. When threads can synchronize their actions on an object by means of wait and notify, the server 

holds onto requests that cannot immediately be satisfied and the client waits for a reply until another client 

has produced whatever it needs. 

Failure model for transactions Lampson [1981] proposed a fault model for distributed transactions that 

accounts for 

failures of disks, servers and communication. In this model, the claim is that the algorithms work correctly 

in the presence of predictable faults, but no claims are made about their behaviour when a disaster occurs. 

Although errors may occur, they can be detected and dealt with before any incorrect behaviour results. The 

model states the 

following: 

• Writes to permanent storage may fail, either by writing nothing or by writing a wrong value – for 

example, writing to the wrong block is a disaster. File storage may also decay. Reads from permanent 

storage can detect (by a checksum) when a actions of two or more concurrent executions of the method 

could be interleaved arbitrarily and have strange effects on the instance variables of the account objects. 

Figure 16.1 Operations of the Account interface 

deposit(amount) 

deposit amount in the account 

withdraw(amount) 

withdraw amount from the account 

getBalance()-> amount 

return the balance of the account 

setBalance(amount) 

set the balance of the account to amount 

Operations of the Branch interface 

create(name)-> account 

create a new account with a given name 

lookUp(name)-> account 

return a reference to the account with the given name 

branchTotal()-> amount 

return the total of all the balances at the branch 



  

 

Distributed Systems Page 161  

the synchronized keyword, which can be applied to methods in Java to ensure that only one thread at a time 

can access an object. In our example, the class that implements the Account interface will be able to declare 

the 

methods as synchronized.  

For example: 

public synchronized void deposit(int amount) throws RemoteException{ 

// adds amount to the balance of the account 

} 

If one thread invokes a synchronized method on an object, then that object is effectively locked, and 

another thread that invokes one of its synchronized methods will be blocked until the lock is released. This 

form of synchronization forces the execution of threads to be separated in time and ensures that the 

instance variables of a single object areaccessed in a consistent manner. Without synchronization, two 

separate deposit invocations might read the balance before either has incremented it – resulting in an 

incorrect value. Any method that accesses an instance variable that can vary should be synchronized. 

Operations that are free from interference from concurrent operations being performed in other threads are 

called atomic operations. The use of synchronized methods in Java is one way of achieving atomic 

operations. But in other programming environments for multi-threaded servers the operations on objects 

still need to have atomic operations in order to keep their objects consistent. This may be achieved by the 

use of any available mutual exclusion mechanism, such as a mutex.Enhancing client cooperation by 

synchronization of server operations. 

• Clients may use  a server as a means of sharing some resources. This is achieved by some clients using 

operations to update the server’s objects and other clients using operations to access them. The above 

scheme for synchronized access to objects provides all that is required in many applications – it prevents 

threads interfering with one another. However, some applications require a way for threads to 

communicate with each other. 

For example, a situation may arise in which the operation requested by one client cannot be completed 

until an operation requested by another client has been performed. This can happen when some clients are 

producers and others are consumers – the consumers may have to wait until a producer has supplied some 

more of the commodity 

in question. It can also occur when clients are sharing a resource – clients needing the resource may have to 

wait for other clients to release it.  The Java wait and notify methods  allow threads to communicate with 
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one another in a manner that solves the above problems. They must be used within synchronized methods 

of an object. A thread calls wait on an object so as to suspend itself and to allow another thread to execute 

a method of that object. A 

thread calls notify to inform any thread waiting on that object that it has changed some of its data. Access 

to an object is still atomic when threads wait for one another: a thread that calls wait gives up its lock and 

suspends itself as a single atomic action; when a thread is restarted after being notified it acquires a new 

lock on the object and resumes execution from after its wait. A thread that calls notify (from within a 

synchronized method) completes the execution of that method before releasing the lock on the object. 

Consider the implementation of a shared Queue object with two methods: first  removes and returns the 

first object in the queue, and append adds a given object to the end of the queue. The method first will test 

whether the queue is empty, in which case it will call wait on the queue. If a client invokes first when the 

queue is empty, it will not get a reply until another client has added something to the queue – the append 

operation will call notify when it has added an object to the queue. This allows one of the threads waiting 

on the queue object to resume and to return the first object in the queue to its client. When threads can 

synchronize their actions on an object by means of wait and notify, the server holds onto requests that 

cannot immediately be satisfied and the client waits for a reply until another client has produced whatever 

it needs. 

Failure model for transactions Lampson [1981] proposed a fault model for distributed transactions that 

accounts for failures of disks, servers and communication. In this model, the claim is that the algorithms 

work correctly in the presence of predictable faults, but no claims are made about their behaviour when a 

disaster occurs. Although errors may occur, they can be detected and dealt with before any incorrect 

behaviour results. The model states the 

following: 

• Writes to permanent storage may fail, either by writing nothing or by writing a wrong value – for example, 

writing to the wrong block is a disaster. File storage may also decay. Reads from permanent storage can 

detect (by a checksum) when a block of data is bad. • Servers may crash occasionally. When a crashed server 

is replaced by a new process, its volatile memory is first set to a state in which it knows none of the values 

(for example, of objects) from before the crash. After that it carries out a recovery procedure using 

information in permanent storage and obtained from other processes to set the values of objects including 

those related to the two-phase 
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commit protocol   When a processor is faulty, it is made to crash so that it is prevented from sending 

erroneous messages and from writing wrong values to permanent storage – that is, so it cannot produce 

arbitrary failures. 

Crashes can occur at any time; in particular, they may occur during recovery. • There may be an arbitrary 

delay before a message arrives. A message may be lost, duplicated or corrupted. The recipient can detect 

corrupted messages using a checksum. Both forged messages and undetected corrupt messages are regarded 

as disasters.The fault model for permanent storage, processors and communications was used to design a 

stable system whose components can survive any single fault and present a simple failure model. In 

particular, stable storage provided an atomic write operation inthe presence of a single fault of the write 

operation or a crash failure of the process. This was achieved by replicating each block on two disk blocks. A 

write operation wasapplied to the pair of disk blocks, and in the case of a single fault, one good block 

wasalways available. A stable processor used stable storage to enable it to recover itsobjects after a crash. 

Communication errors were masked by using a reliable remoteprocedure calling mechanism. 

 Transactions 

In some situations, clients require a sequence of separate requests to a server to be atomic in the sense that: 

1. They are free from interference by operations being performed on behalf of other concurrent clients. 

2. Either all of the operations must be completed successfully or they must have no effect at all in the 

presence of server crashes. 

client’s banking transaction 

Transaction T: 

a.withdraw(100); 

b.deposit(100); 

c.withdraw(200); 

b.deposit(200); 

We return to our banking example to illustrate transactions. A client that performs a sequence of operations 

on a particular bank account on behalf of a user will first lookup the account by name and then apply the 

deposit, withdraw and getBalance operations directly to the relevant account. In our examples, we use 

accounts with names A, B and C. The client looks them up and stores references to them in variables a, b and 

c of type Account. The details of looking up the accounts by name and the declarations of the variables are 

omitted from the examples.example of a simple client transaction specifying a series of related actions 
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involving the bank accounts A, B and C. The first two actions transfer $100 from A to B and the second two 

transfer $200 from C to B. A client achieves atransfer operation by doing a withdrawal followed by a deposit. 

In all of these contexts, a transaction applies to recoverable objects and is intended to be atomic. It is often 

called an atomic transaction. There are two aspects to atomicity:All or nothing: A transaction either 

completes successfully, in which case the effects of all of its operations are recorded in the objects, or (if it 

fails or is deliberately aborted) has no effect at all. This all-or-nothing effect has two further aspects of its 

own: 

Failure atomicity: The effects are atomic even when the server crashes Durability: After a transaction has 

completed successfully, all its effects are saved in permanent storage. We use the term ‘permanent storage’ to 

refer to files held on disk or another permanent medium. Data saved in a file will survive if the server process 

crashes. 

Isolation: Each transaction must be performed without interference from other 

transactions; in other words, the intermediate effects of a transaction must not be visible to other transactions. 

The box below introduces a mnemonic, ACID, for remembering the properties of atomic transactions 

To support the requirement for failure atomicity and durability, the objects must be recoverable; that is, when a 

server process crashes unexpectedly due to a hardware fault or a software error, the changes due to all 

completed transactions must be available in permanent storage so that when the server is replaced by a new 

process, it can recover the objects to reflect the all-or-nothing effect. By the time a server acknowledges the 

completion of a client’s transaction, all of the transaction’s changes to the objects must have been recorded in 

permanent storage. 

server that supports transactions must synchronize the operations sufficiently to ensure that the isolation 

requirement is met. One way of doing this is to perform the transactions serially – one at a time, in some 

arbitrary order. Unfortunately, this solution would generally be unacceptable for servers whose resources are 

shared by multiple interactive users. For instance, in our banking example it is desirable to allow several bank 

clerks to perform online banking transactions at the same time as one another. 

The aim for any server that supports transactions is to maximize concurrency. Therefore transactions are 

allowed to execute concurrently if this would have the same effect as a serial execution – that is, if they are 

serially equivalent or serializable. 

 Operations in the Coordinator interface 

openTransaction() o trans; 

Starts a new transaction and delivers a unique TID trans. This identifier will be used in the 
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other operations in the transaction. 

closeTransaction(trans)o (commit, abort); 

Ends a transaction: a commit return value indicates that the transaction has committed; 

an abort return value indicates that it has aborted. 

                      abortTransaction(trans); 

Aborts the transaction. 

 

Transaction capabilities can be added to servers of recoverable objects. Each transaction is created and 

managed by a coordinator, which implements the Coordinator interface shown in Figure 16.3. The 

coordinator gives each transaction an identifier, or TID. The client invokes the openTransaction method of 

the coordinator to introduce a new transaction – a transaction identifier or TID is allocated and returned. At 

the end of a transaction, the client invokes the closeTransaction method to indicate its end – all of the 

recoverable objects accessed by the transaction should be saved. If, for some reason, the client wants to abort 

a transaction, it invokes the abortTransaction method – all of its effects should be removed from sight. 

transaction is achieved by cooperation between a client program, some recoverable objects and a coordinator. 

The client specifies the sequence of invocations on recoverable objects that are to comprise a transaction. To 

achieve this, the client sends with each invocation the transaction identifier returned by openTransaction. 

One way to make this possible is to include an extra argument in each operation of a recoverable object to 

carry the TID. For example, in the banking service the deposit operation might be defined: 

deposit(trans, amount) 

Deposits amount in the account for transaction with TID trans 

 

When transactions are provided as middleware, the TID can be passed implicitly with all remote invocations 

between openTransaction and closeTransaction or abortTransaction. This is what the CORBA Transaction 

Service does. We shall not show TIDs in our examples. 

Normally, a transaction completes when the client makes a closeTransaction request. If the transaction has 

progressed normally, the reply states that the transaction is committed – this constitutes a promise to the 

client that all of the changes requested in the transaction are permanently recorded and that any future 

transactions that access the same data will see the results of all of the changes made during the transaction. 

Alternatively, the transaction may have to abort for one of several reasons related to the nature of the 

transaction itself, to conflicts with another transaction or to the crashing of a process or computer. When a 
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transaction is aborted the parties involved (the recoverable objects and the coordinator) must ensure that none 

of its effects are visible to future transactions, either in the objects or in their copies in permanent storage. 

 

Figure 16.4    Transaction life 
histories    
   

Successful Aborted by client Aborted by server 
    

openTransaction openTransaction  openTransaction 

operation operation  operation 

operation operation  operation 

• • server aborts • 

• • transaction o • 

operation operation  
operation ERROR 
  

   reported to client 

closeTransaction 

abortTransactio

n 

 

  
 

 

shows these three alternative life histories for transactions. We refer to a transaction as failing in both of the 

latter cases. 

 

 

 

Service actions related to process crashes • If a server process crashes unexpectedly, it is eventually 

replaced. The new server process aborts any uncommitted transactions and uses a recovery procedure to 

restore the values of the objects to the values produced by the most recently committed transaction. To deal 

with a client that crashes unexpectedly during a transaction, servers can give each transaction an expiry time 

and abort any transaction that has not completed before its expiry time. 

Client actions related to server process crashes • If a server crashes while a transaction is in progress, the 

client will become aware of this when one of the operations returns an exception after a timeout. If a server 

crashes and is then replaced during the progress of transaction, the transaction will no longer be valid and the 

client must be informed via an exception to the next operation. In either case, the client must then formulate a 

plan, possibly in consultation with the human user, for the completion or abandonment of the task of which 

the transaction was a part. 

Concurrency control 
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This section illustrates two well-known problems of concurrent transactions in the context of the banking 

example – the ‘lost update’ problem and the ‘inconsistent retrievals’ problem. We then show how both of 

these problems can be avoided by using serially equivalent executions of transactions. We assume throughout 

that each of the operations deposit, withdraw, getBalance and setBalance is a synchronized operation – that 

is, that its effects on the instance variable that records the balance of an account are atomic. 

The lost update problem • The lost update problem is illustrated by the following pair of transactions on 

bank accounts A, B and C, whose initial balances are $100, $200 and $300, respectively. Transaction T 

transfers an amount from account A to account B. Transaction U transfers an amount from account C to 

account B. In both cases, the amount transferred is calculated to increase the balance of B by 10%. The net 

effects on account B of executing the transactions T and U should be to increase the balance of account B by 

10% twice, so its final value is $242. 

Now consider the effects of allowing the transactions T and U to run concurrently, as in Figure 16.5. Both 

transactions get the balance of B as $200 and then deposit $20. The result is incorrect, increasing the balance 

of account B by $20 instead of $42. This is an illustration of the ‘lost update’ problem. U’s update is lost 

because T overwrites it without seeing it. Both transactions have read the old value before either writes the 

new value. 

In Figure onwards, we show the operations that affect the balance of an account on successive lines down the 

page, and the reader should assume that an operation on a particular line is executed at a later time than the 

one on the line above it. 

Transaction T: Transaction U:  

balance = b.getBalance(); balance = b.getBalance();  
b.setBalance(balance*1.1

); 

b.setBalance(balance*1.1

);  

a.withdraw(balance/10) c.withdraw(balance/10)  
   

balance = b.getBalance(); $200  

 balance = b.getBalance(); $200 

 
b.setBalance(balance*1.1

); $220 

b.setBalance(balance*1.1

); $220  

a.withdraw(balance/10) $80  

 c.withdraw(balance/10) $280 
   

 

amount transferred is calculated to increase the balance of B by 10%. The net effects on account B of 

executing the transactions T and U should be to increase the balance of account B by 10% twice, so its final 
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value is $242. 

Now consider the effects of allowing the transactions T and U to run concurrently, as in Figure 16.5. Both 

transactions get the balance of B as $200 and then deposit $20. The result is incorrect, increasing the balance 

of account B by $20 instead of $42. This is an illustration of the ‘lost update’ problem. U’s update is lost 

because T overwrites it without seeing it. Both transactions have read the old value before either writes the 

new value. 

In Figure 16.5 onwards, we show the operations that affect the balance of an account on successive lines 

down the page, and the reader should assume that an operation on a particular line is executed at a later time 

than the one on the line above it. 

Inconsistent retrievals • Figure 16.6 shows another example related to a bank account in which transaction 

V transfers a sum from account A to B and transaction W invokes the branchTotal method to obtain the sum 

of the balances of all the accounts in the bank. 

The inconsistent retrievals problem  
 

Transaction V:  Transaction W:  

a.withdraw(100) 
 

aBranch.branchTotal() 
 

  

b.deposit(100)    
    

a.withdraw(100); $100   

  total = a.getBalance( ) $100 

  
total = total + 

b.getBalance() $300 

  
total = total + 

c.getBalance()  

b.deposit(100) $300 •  

  •  
    

     A serially equivalent interleaving of T and U  
    

 Transaction T: Transaction U:  
 

balance = b.getBalance() balance = b.getBalance() 
 

  

 
b.setBalance(balance*1.1

) b.setBalance(balance*1.1)  

 a.withdraw(balance/10) c.withdraw(balance/10)  
    

 balance = b.getBalance() $200  

 
b.setBalance(balance*1.1

) $220  

  balance = b.getBalance() $220 

  b.setBalance(balance*1.1) $242 

 a.withdraw(balance/10) $80  

  c.withdraw(balance/10) $278 
    



  

 

Distributed Systems Page 169  

The balances of the two bank accounts, A and B, are both initially $200. The result of branchTotal includes 

the sum of A and B as $300, which is wrong. This is an illustration of the ‘inconsistent retrievals’ problem. 

W’s retrievals are inconsistent because V has performed only the withdrawal part of a transfer at the time the 

sum is calculated. 

Serial equivalence • If each of several transactions is known to have the correct effect when it is done on its 

own, then we can infer that if these transactions are done one at a time in some order the combined effect will 

also be correct. An interleaving of the operations of transactions in which the combined effect is the same as 

if the transactions had been performed one at a time in some order is a serially equivalent interleaving. When 

we say that two different transactions have the same effect as one another, we mean that the read operations 

return the same values and that the instance variables of the objects have the same values at the end. 

The use of serial equivalence as a criterion for correct concurrent execution prevents the occurrence of lost 

updates and inconsistent retrievals. 

The lost update problem occurs when two transactions read the old value of a variable and then use it to 

calculate the new value. This cannot happen if one transaction is performed before the other, because the 

later transaction will read the value written by the earlier one. As a serially equivalent interleaving of two 

transactions produces the same effect as a serial one, we can solve the lost update problem by means of serial 

equivalence. Figure 16.7 shows one such interleaving in which the operations that affect the shared account, 

B, are actually serial, for transaction T does all its operations on B before transaction U does. Another 

interleaving of T and U that has this property is one in which transaction U completes its operations on 

account B before transaction T starts. 

We now consider the effect of serial equivalence in relation to the inconsistent retrievals problem, in which 

transaction V is transferring a sum from account A to B and transaction W is obtaining the sum of all the 

balances (see Figure 16.6). The inconsistent retrievals problem can occur when a retrieval transaction runs 

concurrently with an update transaction. It cannot occur if the retrieval transaction is performed before or 

after the update transaction. A serially equivalent interleaving of a retrieval transaction and an update 

transaction, for example as in Figure 16.8, will prevent inconsistent retrievals occurring. 

A serially equivalent interleaving of V and W 
 
 

Transaction V: Transaction W: 

   
a.withdraw(100); aBranch.branchTotal( ) 

 
b.deposit(100) 
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a.withdraw(100); $100 
 

b.deposit(100) $300 
 

total = a.getBalance( ) $100 

total = total + 

b.getBalance() $400 

total = total + 

c.getBalance()  

...  
  

 

Conflicting operations • When we say that a pair of operations conflicts we mean that their combined 

effect depends on the order in which they are executed. To simplify matters we consider a pair of 

operations, read and write. read accesses the value of an object and write changes its value. The effect of 

an operation refers to the value of an object set by a write operation and the result returned by a read 

operation. The conflict rules for read and write operations are given in Figure 16.9. 

For any pair of transactions, it is possible to determine the order of pairs of conflicting operations on 

objects accessed by both of them. Serial equivalence can be defined in terms of operation conflicts as 

follows: 

For two transactions to be serially equivalent, it is necessary and sufficient that all pairs of conflicting 

operations of the two transactions be executed in the same order at all of the objects they both access. 

Figure 
16.9 Read and write operation conflict rules 
    

 

Operations of 

different 

Confli

ct Reason 

 transactions   
     

 
read read No 

Because the effect of a pair of read 

operations does 
 not depend on the order in which they are 

executed     

 
read write Yes 

Because the effect of a read and a write 

operation 
 

depends on the order of their execution     

 
write write Yes 

Because the effect of a pair of write 

operations 
 

depends on the order of their execution     
     

 

Figure 16.10 A non–serially-equivalent interleaving of operations of transactions T and U  
 

Transaction T: Transaction U: 
  

x = read(i)  
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write(i, 10)  
y = read(j)  
write(j, 30)  
write(j, 20)  
z = read (i)  
 

 

Consider as an example the transactions T and U, defined as follows: 

 

T: x = read(i); write(i, 10); write(j, 20); 

U: y = read(j); write(j, 30); z = read (i); 

Then consider the interleaving of their executions, shown in Figure 16.10. Note that each transaction’s 

access to objects i and j is serialized with respect to one another, because T makes all of its accesses to i 

before U does and U makes all of its accesses to j before T does. But the ordering is not serially 

equivalent, because the pairs of conflicting operations are not done in the same order at both objects. 

Serially equivalent orderings require one of the following two conditions: 

 T accesses i before U and T accesses j before U. 

  accesses i before T and U accesses j before T. 

Serial equivalence is used as a criterion for the derivation of concurrency control protocols. These 

protocols attempt to serialize transactions in their access to objects. Three alternative approaches to 

concurrency control are commonly used: locking, optimistic concurrency control and timestamp ordering. 

However, most practical systems use locking, which is discussed in Section 16.4. When locking is used, 

the server sets a lock, labelled with the transaction identifier, on each object just before it is accessed and 

removes these locks when the transaction has completed. While an object is locked, only the transaction 

that it is locked for can access that object; other transactions must either wait until the object is unlocked 

or, in some cases, share the lock. The use of locks can lead to deadlocks, with transactions waiting for 

each other to release locks – for example, when a pair of transactions each has an object locked that the 

other needs to access. We discuss the deadlock problem and some remedies for it in Section 16.4.1. 

Optimistic concurrency control is described in Section 16.5. In optimistic schemes, a transaction proceeds 

until it asks to commit, and before it is allowed to commit the server performs a check to discover whether 

it has performed operations on any objects that conflict with the operations of other concurrent 

transactions, in which case the server aborts it and the client may restart it. The aim of the check is to 

ensure that all the objects are correct. 
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Timestamp ordering is described in Section 16.6. In timestamp ordering, a server records the most recent 

time of reading and writing of each object and for each 

Figure 16.11 A dirty read when transaction T aborts  
 

Transaction T: Transaction U:  

a.getBalance() a.getBalance()  
a.setBalance(balance + 

10) 

a.setBalance(balance + 

20)  
   

balance = a.getBalance() $100  

a.setBalance(balance + 

10) $110  

 balance = a.getBalance() $110 

 
a.setBalance(balance + 

20) $130 

 commit transaction  

abort transaction   
    

 

operation, the timestamp of the transaction is compared with that of the object to determine whether it can be 

done immediately or must be delayed or rejected. When an operation is delayed, the transaction waits; when 

it is rejected, the transaction is aborted. 

Basically, concurrency control can be achieved either by clients’ transactions waiting for one another or by 

restarting transactions after conflicts between operations have been detected, or by a combination of the two. 

Recoverability from aborts 

Servers must record all the effects of committed transactions and none of the effects of aborted 

transactions.They must therefore allow for the fact that a transaction may abort by preventing it affecting 

other concurrent transactions if it does so. 

This section illustrates two problems associated with aborting transactions in the context of the banking 

example. These problems are called ‘dirty reads’ and ‘premature writes’, and both of them can occur in the 

presence of serially equivalent executions of transactions. These issues are concerned with the effects of 

operations on objects such as the balance of a bank account. To simplify things, operations are considered in 

two categories: read operations and write operations. In our illustrations, getBalance is a read operation and 

setBalance a write operation. 

Dirty reads • 

 The isolation property of transactions requires that transactions do not see the uncommitted state of 

other transactions. The ‘dirty read’ problem is caused by the interaction between a read operation in 

one transaction and an earlier write operation in another transaction on the same object. Consider the 
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executions illustrated in Figure 16.11, in which T gets the balance of account A and sets it to $10 more, 

then U gets the balance of account A and sets it to $20 more, and the two executions are serially 

equivalent. Now suppose that the transaction T aborts after U has committed. Then the transaction U 

will have seen a value that never existed, since A will be restored to its original value. We say that the 

transaction U has performed a dirty read. As it has committed, it cannot be undone. 

Figure 16.12  Overwriting uncommitted 
values  
   

 Transaction T: Transaction U: 
 

a.setBalance(105) a.setBalance(110)  
   

  $100 

 a.setBalance(105) $105 

  a.setBalance(110) 

 

Recoverability of 

transactions  • 

If a transaction (like U) has committed after it 

has seen 

 

the effects of a transaction that subsequently aborted, the situation is not recoverable. To ensure that such 

situations will not arise, any transaction (like U) that is in danger of having a dirty read delays its commit 

operation. The strategy for recoverability is to delay commits until after the commitment of any other 

transaction whose uncommitted state has been observed. In our example, U delays its commit until after T 

commits. In the case that T aborts, then U must abort as well. 

Cascading aborts • In Figure 16.11, suppose that transaction U delays committing until after T aborts. As we 

have said, U must abort as well. Unfortunately, if any other transactions have seen the effects due to U, they 

too must be aborted. The aborting of these latter transactions may cause still further transactions to be 

aborted. Such situations are called cascading aborts. To avoid cascading aborts, transactions are only 

allowed to read objects that were written by committed transactions. To ensure that this is the case, any read 

operation must be delayed until other transactions that applied a write operation to the same object have 

committed or aborted. The avoidance of cascading aborts is a stronger condition than recoverability. 

Premature writes • Consider another implication of the possibility that a transaction may abort. This one is 

related to the interaction between write operations on the same object belonging to different transactions. For 

an illustration, we consider two setBalance transactions, T and U, on account A, as shown in Figure 16.12. 

Before the transactions, the balance of account A was $100. The two executions are serially equivalent, with 

T setting the balance to $105 and U setting it to $110. If the transaction U aborts and T commits, the balance 

should be $105. 
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Some database systems implement the action of abort by restoring ‘before images’ of all the writes of a 

transaction. In our example, A is $100 initially, which is the ‘before image’ of T’s write; similarly, $105 is 

the ‘before image’ of U’s write. Thus if U aborts, we get the correct balance of $105. 

Now consider the case when U commits and then T aborts. The balance should be $110, but as the ‘before 

image’ of T’s write is $100, we get the wrong balance of $100. Similarly, if T aborts and then U aborts, the 

‘before image’ of U’s write is $105 and we get the wrong balance of $105 – the balance should revert to 

$100. 

To ensure correct results in a recovery scheme that uses before images, write operations must be delayed 

until earlier transactions that updated the same objects have either committed or aborted. 

Strict executions of transactions • Generally, it is required that transactions delay both their read and write 

operations so as to avoid both dirty reads and premature writes. The executions of transactions are called 

strict if the service delays both read and write operations on an object until all transactions that previously 

wrote that object have either committed or aborted. The strict execution of transactions enforces the desired 

property of isolation. 

Tentative versions • For a server of recoverable objects to participate in transactions, it must be designed so 

that any updates of objects can be removed if and when a transaction aborts. To make this possible, all of the 

update operations performed during a transaction are done in tentative versions of objects in volatile 

memory. Each transaction is provided with its own private set of tentative versions of any objects that it has 

altered. All the update operations of a transaction store values in the transaction’s own private set. Access 

operations in a transaction take values from the transaction’s own private set if possible, or failing that, from 

the objects.The tentative versions are transferred to the objects only when a transaction commits, by which 

time they will also have been recorded in permanent storage. This is performed in a single step, during which other 

transactions are excluded from access to the objects that are being altered. When a transaction aborts, its tentative 

versions are deleted. 

 
Nested transactions  

 

Nested transactions extend the above transaction model by allowing transactions to be composed of other 

transactions. Thus several transactions may be started from within a transaction, allowing transactions to be 

regarded as modules that can be composed as required. 

The outermost transaction in a set of nested transactions is called the top-level transaction. Transactions other 

than the top-level transaction are called subtransactions. For example, in Figure 16.13, T is a top-level 
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transaction that starts a pair of subtransactions, T1 and T2. The subtransaction T1 starts its own pair of 

subtransactions, T11 and T22. Also, subtransaction T2 starts its own subtransaction, T21, which starts another 

subtransaction, T211. 

A subtransaction appears atomic to its parent with respect to transaction failures and to concurrent access. 

Subtransactions at the same level, such as T1 and T2, can run concurrently, but their access to common 

objects is serialized – for example, by the locking scheme described in Section 16.4. Each subtransaction can 

fail independently of its parent and of the other subtransactions. When a subtransaction aborts, the parent 

transaction can sometimes choose an alternative subtransaction to complete its task. For example, a 

transaction to deliver a mail message to a list of recipients could be structured as a set of subtransactions, 

each of which delivers the message to one of the recipients. If one or more of the subtransactions fails, the 

parent transaction could record the fact and then commit, with the result that all the successful child 

transactions commit. It could then start another transaction to attempt to redeliver the messages that were not 

sent the first time. 

\ 

Figure 16.13 Nested transactions 

 
 : top-level transaction 

    T1 = openSubTransaction  T2 = openSubTransaction   
 

T1 : 

       commit 

      T2 : 

 openSubTransaction openSubTransaction   openSubTransaction 

T11 : 

  provisional commit     abort 

T12 : T21 : 

        openSubTransaction  
 provisional commit   provisional commit    provisional commit  

        
T

211 
: 

              
provisional commit 

When we need to distinguish our original form of transaction from nested ones, we use the term flat 

transaction. It is flat because all of its work is done at the same level between an openTransaction and a 

commit or abort, and it is not possible to commit or abort parts of it. Nested transactions have the following 

main advantages: 

Subtransactions at one level (and their descendants) may run concurrently with other subtransactions at the 

same level in the hierarchy. This can allow additional concurrency in a transaction. When subtransactions run 

in different servers, they can work in parallel. For example, consider the branchTotal operation in our 

banking example. It can be implemented by invoking getBalance at every account in the branch. Now each 

of these invocations may be performed as a subtransaction, in which case they can be performed 
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concurrently. Since each one applies to a different account, there will be no conflicting operations among the 

subtransactions. 

Subtransactions can commit or abort independently. In comparison with a single transaction, a set of nested 

subtransactions is potentially more robust. The above example of delivering mail shows that this is so – with 

a flat transaction, one transaction failure would cause the whole transaction to be restarted. In fact, a parent 

can decide on different actions according to whether a subtransaction has aborted or not. 

The rules for committing of nested transactions are rather subtle: 

A transaction may commit or abort only after its child transactions have completed. 

When a subtransaction completes, it makes an independent decision either to commit provisionally or to 

abort. Its decision to abort is final. 

When a parent aborts, all of its subtransactions are aborted. For example, if T2 aborts then T21 and T211 must 

also abort, even though they may have provisionally committed. 

When a subtransaction aborts, the parent can decide whether to abort or not. In our example, T decides to 

commit although T2 has aborted. 

If the top-level transaction commits, then all of the subtransactions that have provisionally committed can 

commit too, provided that none of their ancestors has aborted. In our example, T’s commitment allows T1, T11 

and T12 to commit, but not T21 and T211 since their parent, T2, aborted. Note that the effects of a 

subtransaction are not permanent until the top-level transaction commits. 
   
In some cases, the top-level transaction may decide to abort because one or more of its subtransactions have 

aborted. As an example, consider the following Transfer transaction: 

Transfer $100 from B to A 

a.deposit(100) 

b.withdraw(100) 

This can be structured as a pair of subtransactions, one for the withdraw operation and the other for deposit. 

When the two subtransactions both commit, the Transfer transaction can also commit. Suppose that a 

withdraw subtransaction aborts whenever an account is overdrawn. Now consider the case when the 

withdraw subtransaction aborts and the deposit subtransaction commits – and recall that the commitment of a 

child transaction is conditional on the parent transaction committing. We presume that the top-level 

(Transfer) transaction will decide to abort. The aborting of the parent transaction causes the subtransactions 

to abort – so the deposit transaction is aborted and all its effects are undone. 

Locks 
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Transactions must be scheduled so that their effect on shared data is serially equivalent. A server can achieve 

serial equivalence of transactions by serializing access to the objects. Figure 16.7 shows an example of how 

serial equivalence can be achieved with some degree of concurrency – transactions T and U both access 

account B, but T completes its access before U starts accessing it. 

simple example of a serializing mechanism is the use of exclusive locks. In this locking scheme, the server 

attempts to lock any object that is about to be used by any operation of a client’s transaction. If a client 

requests access to an object that is already locked due to another client’s transaction, the request is suspended 

and the client must wait until the object is unlocked. 

Figure 16.14 illustrates the use of exclusive locks. It shows the same transactions as Figure 16.7, but with an 

extra column for each transaction showing the locking, waiting and unlocking. In this example, it is assumed 

that when transactions T and U start, the balances of the accounts A, B and C are not yet locked. When 

transaction T is about to use account B, it is locked for T. When transaction U is about to use B it is still 

Figure 16.14   Transactions T and U with exclusive 
locks    
      

 Transaction T:  Transaction U:  

 
balance = 

b.getBalance()  
balance = 

b.getBalance()  

 b.setBalance(bal*1.1)  b.setBalance(bal*1.1)  

 a.withdraw(bal/10)  c.withdraw(bal/10)  
 

Operations Locks Operations 
 

Locks   
      

 openTransaction     

 bal = b.getBalance() lock B    

 b.setBalance(bal*1.1)  openTransaction  

 a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s 

     lock on B 

 closeTransaction unlock A, B • • •  

     lock B 

   b.setBalance(bal*1.1)  

   c.withdraw(bal/10) lock C 

   closeTransaction unlock B, C 

 
 
 
 
 
 
 
 
    



  

 

Distributed Systems Page 178  

Figure 16.14   Transactions T and U with exclusive 
locks 

      

 Transaction T:  Transaction U:  

 
balance = 

b.getBalance()  
balance = 

b.getBalance()  

 b.setBalance(bal*1.1)  b.setBalance(bal*1.1)  

 a.withdraw(bal/10)  c.withdraw(bal/10)  
 

Operations Locks Operations 
 

Locks   
      

 openTransaction     

 bal = b.getBalance() lock B    

 b.setBalance(bal*1.1)  openTransaction  

 a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s 

     lock on B 

 closeTransaction unlock A, B • • •  

     lock B 

   b.setBalance(bal*1.1)  

   c.withdraw(bal/10) lock C 

   closeTransaction unlock B, C 

     

locked for T, so transaction U waits. When transaction T is committed, B is unlocked, whereupon transaction 

U is resumed. The use of the lock on B effectively serializes the access to B. Note that if, for example, T 

released the lock on B between its getBalance and setBalance operations, transaction U’s getBalance 

operation on B could be interleaved between them. 

Serial equivalence requires that all of a transaction’s accesses to a particular object be serialized with respect 

to accesses by other transactions. All pairs of conflicting operations of two transactions should be executed in 

the same order. To ensure this, a transaction is not allowed any new locks after it has released a lock. The 

first phase of each transaction is a ‘growing phase’, during which new locks are acquired. In the second 

phase, the locks are released (a ‘shrinking phase’). This is called two-phase locking. 

We saw   that because transactions may abort, strict executions are needed to prevent dirty reads and 

premature writes. Under a strict execution regime, a transaction that needs to read or write an object must be 

delayed until other transactions that wrote the same object have committed or aborted. To enforce this rule, 

any locks applied during the progress of a transaction are held until the transaction commits or aborts. This is 

called strict two-phase locking. The presence of the locks prevents other transactions reading or writing the 

objects. When a transaction commits, to ensure recoverability, the locks must be held until all the objects it 

updated have been written to permanent storageserver generally contains a large number of objects, and a 

typical transaction accesses only a few of them and is unlikely to clash with other current transactions. The 
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granularity with which concurrency control can be applied to objects is an important issue, since the scope 

for concurrent access to objects in a server will be limited severely if concurrency control (for example, 

locks) can only be applied to all the objects at once. In our banking example, if locks were applied to all 

customer accounts at a branch, only one bank clerk could perform an online banking transaction at any time – 

hardly an acceptable constraint! 

The portion of the objects to which access must be serialized should be as small as possible; that is, just that 

part involved in each operation requested by transactions. In our banking example, a branch holds a set of 

accounts, each of which has a balance. Each banking operation affects one or more account balances – 

deposit and withdraw affect one account balance, and branchTotal affects all of them. 

The description of concurrency control schemes given below does not assume any particular granularity. We 

discuss concurrency control protocols that are applicable to objects whose operations can be modelled in 

terms of read and write operations on the objects. For the protocols to work correctly, it is essential that each 

read and write operation is atomic in its effects on objects. 

Concurrency control protocols are designed to cope with conflicts between operations in different 

transactions on the same object. In this chapter, we use the notion of conflict between operations to explain 

the protocols. The conflict rules for read and write operations are given in Figure 16.9, which shows that 

pairs of read operations from different transactions on the same object do not conflict. Therefore, a simple 

exclusive lock that is used for both read and write operations reduces concurrency more than is necessary. 

It is preferable to adopt a locking scheme that controls the access to each object so that there can be several 

concurrent transactions reading an object, or a single transaction writing an object, but not both. This is 

commonly referred to as a ‘many readers/single writer’ scheme. Two types of locks are used: read locks and 

write locks. Before a transaction’s read operation is performed, a read lock should be set on the object. 

Before a transaction’s write operation is performed, a write lock should be set on the object. Whenever it is 

impossible to set a lock immediately, the transaction (and the client) must wait until it is possible to do so – a 

client’s request is never rejected. 

As pairs of read operations from different transactions do not conflict, an attempt to set a read lock on an 

object with a read lock is always successful. All the transactions reading the same object share its read lock – 

for this reason, read locks are sometimes called shared locks. 

The operation conflict rules tell us that: 

If a transaction T has already performed a read operation on a particular object, then a concurrent transaction 

U must not write that object until T commits or aborts. 
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If a transaction T has already performed a write operation on a particular object, then a concurrent transaction 

U must not read or write that object until T commits or aborts. 

To enforce condition 1, a request for a write lock on an object is delayed by the presence of a read lock 

belonging to another transaction. To enforce condition 2, a request for either a read lock or a write lock on  

an object is delayed by the presence of a write lock belonging to another transaction. 

Figure 
16.15 

Lock 
compatibility     

      
 For one object   Lock requested 
   

read 
 

write     
      

 Lock already set none OK  OK 
      

  read OK  wait 

  write wait  wait 
       
 

Figure 16.15 shows the compatibility of read locks and write locks on any particular object. The entries to the left of 

the first column in the table show the type of lock already set, if any. The entries above the first row show the type of 

lock requested. The entry in each cell shows the effect on a transaction that requests the type of lock given above when 

the object has been locked in another transaction with the type of lock on the left. 

Inconsistent retrievals and lost updates are caused by conflicts between read operations in one transaction and write 

operations in another without the protection of a concurrency control scheme such as locking. Inconsistent retrievals 

are prevented by performing the retrieval transaction before or after the update transaction. If the retrieval transaction 

comes first, its read locks delay the update transaction. If it comes second, its request for read locks causes it to be 

delayed until the update transaction has completed. 

Lost updates occur when two transactions read a value of an object and then use it to calculate a new value. Lost 

updates are prevented by making later transactions delay their reads until the earlier ones have completed. This is 

achieved by each transaction setting a read lock when it reads an object and then promoting it to a write lock when it 

writes the same object – when a subsequent transaction requires a read lock it will be delayed until any current 

transaction has completed. 
 
A transaction with a read lock that is shared with other transactions cannot promote its read lock to a write 

lock, because the latter would conflict with the read locks held by the other transactions. Therefore, such a 

transaction must request a write lock and wait for the other read locks to be released. 

 

Lock promotion refers to the conversion of a lock to a stronger lock – that is, a lock that is more exclusive. 

The lock compatibility table in Figure 16.15 shows the relative exclusivity of locks. The read lock allows 

other read locks, whereas the write lock does not. Neither allows other write locks. Therefore, a write lock is 
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more exclusive than a read lock. Locks may be promoted because the result is a more exclusive lock. It is not 

safe to demote a lock held by a transaction before it commits, because the result will be more permissive than 

the previous one and may allow executions by other transactions that are inconsistent with serial equivalence. 

 

The rules for the use of locks in a strict two-phase locking implementation are summarized in Figure 16.16. 

To ensure that these rules are adhered to, the client has no access to operations for locking or unlocking items 

of data. Locking is performed when the requests for read and write operations are about to be applied to the 

recoverable objects, and unlocking is performed by the commit or abort operations of the transaction 

coordinator. 

For example, the CORBA Concurrency Control Service [OMG 2000b] can be used to apply concurrency 

control on behalf of transactions or to protect objects without using transactions. It provides a means of 

associating a collection of locks (called a lockset) with a resource such as a recoverable object. A lockset 

allows locks to be acquired or released. A lockset’s lock method will acquire a lock or block until the lock is 

free; other methods allow locks to be promoted or released. Transactional locksets support the same methods 

as locksets, but their methods require transaction identifiers as arguments. We mentioned earlier that the 

CORBA transaction service tags all client requests in a transaction with the transaction identifier. This 

enables a suitable lock to be acquired before each of the recoverable objects is accessed during a transaction. 

The transaction coordinator is responsible for releasing the locks when a transaction commits or aborts. 
 
The rules given in Figure 16.16 ensure strictness, because the locks are held until a transaction has either 

committed or aborted. However, it is not necessary to hold read locks to ensure strictness. Read locks need 

only be held until the request to commit or abort arrives. 
 
Lock implementation • The granting of locks will be implemented by a separate object in the server that we 

call the lock manager. The lock manager holds a set of locks, for example in a hash table. Each lock is an 

instance of the class Lock and is associated with a particular object. The class Lock is shown in Figure 16.17. 

Each instance of Lock maintains the following information in its instance variables:the identifier of the 

locked object; 
 
the transaction identifiers of the transactions that currently hold the lock (shared locks can have several 

holders); 
 
a lock type. 

 

Figure 16.17 Lock class 
 

public class Lock {  
private Object object; // the object being protected by the lock  
private Vector holders; // the TIDs of current holders private LockType 
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lockType; // the current type 

 
public synchronized void acquire(TransID trans, LockType aLockType ){ while(/*another transaction holds 

the lock in conflicting mode*/) { 

try {  
wait();  

}catch ( InterruptedException e){/*...*/ }  
}  
if (holders.isEmpty()) { // no TIDs hold lock  

holders.addElement(trans);  
lockType = aLockType;  

} else if (/*another transaction holds the lock, share it*/ ) ){  
if (/* this transaction not a holder*/) holders.addElement(trans);  

} else if (/* this transaction is a holder but needs a more exclusive lock*/) 

lockType.promote();  
}  

} 

 

public synchronized void release(TransID trans ){ 

holders.removeElement(trans); // remove this holder  
 set locktype to none notifyAll();  

}  
}  

 

The methods of Lock are synchronized so that the threads attempting to acquire or release a lock will not 

interfere with one another. But, in addition, attempts to acquire the lock use the wait method whenever they 

have to wait for another thread to release it. 

 

The acquire method carries out the rules given in Figure 16.15 and Figure 16.16. Its arguments specify a 

transaction identifier and the type of lock required by that transaction. It tests whether the request can be 

granted. If another transaction holds the lock in a conflicting mode, it invokes wait, which causes the caller’s 

thread to be suspended until a corresponding notify. Note that the wait is enclosed in a while, because all 

waiters are notified and some of them may not be able to proceed. When, eventually, the condition is 

satisfied, the remainder of the method sets the lock appropriately: 

 
if no other transaction holds the lock, just add the given transaction to the holders and set the type; 

else if another transaction holds the lock, share it by adding the given transaction to the holders (unless it is 

already a holder); 

else if this transaction is a holder but is requesting a more exclusive lock, promote the lock. 

Figure 16.18 LockManager class 
 

public class LockManager {  
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private Hashtable theLocks; 

 

public void setLock(Object object, TransID trans, LockType lockType){ Lock foundLock;  
synchronized(this){  

 find the lock associated with object  
 if there isn’t one, create it and add it to the hashtable  

}  
foundLock.acquire(trans, lockType);  

} 

 

 synchronize this one because we want to remove all entries public synchronized 

void unLock(TransID trans) {  
Enumeration e = theLocks.elements(); while(e.hasMoreElements()){ 

Lock aLock = (Lock)(e.nextElement());  
if(/* trans is a holder of this lock*/ ) aLock.release(trans);  

}  
}  

}  
 

 

The release method’s arguments specify the transaction identifier of the transaction that is releasing the lock. 

It removes the transaction identifier from the holders, sets the lock type to none and calls notifyAll. The 

method notifies all waiting threads in case there are multiple transactions waiting to acquire read locks – all 

of them may be able to proceed. 

The class LockManager is shown in Figure 16.18. All requests to set locks and to release them on behalf of 

transactions are sent to an instance of LockManager: 

The setLock method’s arguments specify the object that the given transaction wants to lock and the type of 

lock. It finds a lock for that object in its hashtable or, if necessary, creates one. It then invokes the acquire 

method of that lock. 

The unLock method’s argument specifies the transaction that is releasing its locks. It finds all of the locks in 

the hashtable that have the given transaction as a holder. For each one, it calls the release method. 

The reader is invited to consider the following: 

What is the consequence for write transactions in the presence of a steady trickle of requests for read locks? 

Think of an alternative implementation. 

When the holder has a write lock, several readers and writers may be waiting. The reader should consider the 

effect of notifyAll and think of an alternative implementation. If a holder of a read lock tries to promote the 

lock when the lock is shared, it will be blocked. Is there any solution to this difficulty? 
 
Locking rules for nested transactions • The aim of a locking scheme for nested transactions is to serialize 

access to objects so that: 
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Each set of nested transactions is a single entity that must be prevented from observing the partial effects of 

any other set of nested transactions. 

Each transaction within a set of nested transactions must be prevented from observing the partial effects of 

the other transactions in the set. 

The first rule is enforced by arranging that every lock that is acquired by a successful subtransaction is 

inherited by its parent when it completes. Inherited locks are also inherited by ancestors. Note that this form 

of inheritance passes from child to parent! The top-level transaction eventually inherits all of the locks that 

were acquired by successful subtransactions at any depth in a nested transaction. This ensures that the locks 

can be held until the top-level transaction has committed or aborted, which prevents members of different 

sets of nested transactions observing one another’s partial effects. 

The second rule is enforced as follows: 

Parent transactions are not allowed to run concurrently with their child transactions. If a parent transaction 

has a lock on an object, it retains the lock during the time that its child transaction is executing. This means 

that the child transaction temporarily acquires the lock from its parent for its duration. 

Subtransactions at the same level are allowed to run concurrently, so when they access the same objects, the 

locking scheme must serialize their access. 

The following rules describe lock acquisition and release 

For a subtransaction to acquire a read lock on an object, no other active transaction can have a write lock on 

that object, and the only retainers of a write lock are its ancestors. 

For a subtransaction to acquire a write lock on an object, no other active transaction can have a read or write 

lock on that object, and the only retainers of read and write locks on that object are its ancestors. 

When a subtransaction commits, its locks are inherited by its parent, allowing the parent to retain the locks in 

the same mode as the child. 

When a subtransaction aborts, its locks are discarded. If the parent already retains the locks, it can continue to 

do so.Note that subtransactions at the same level that access the same object will take turns to acquire the 

locks retained by their parent. This ensures that their access to a common object is serialized. 

As an example, suppose that subtransactions T1, T2 and T11 in Figure 16.13 all access a common object, 

which is not accessed by the top-level transaction T. Suppose that subtransaction T1 is the first to access the 

object and successfully acquires a lock, 

Figure 16.19 Deadlock with write locks 

 

Transaction T Transaction U 
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Operations Locks Operations Locks 
a.deposit(100); write lock A   

  b.deposit(200) write lock B 

b.withdraw(100)    

••• waits for U’s a.withdraw(200); waits for T’s 

 lock on B ••• lock on A 

•••  •••  

•••  •••  
     

 
 

which it passes on to T11 for the duration of its execution, getting it back when T11 completes. When T1 

completes its execution, the top-level transaction T inherits the lock, which it retains until the set of nested 

transactions completes. The subtransaction T2 can acquire the lock from T for the duration of its execution. 

  
Definition of deadlock • Deadlock is a state in which each member of a group of transactions is waiting for 

some other member to release a lock. A wait-for graph can be used to represent the waiting relationships 

between current transactions. In a wait-for graph the nodes represent transactions and the edges represent 

wait-for relationships between transactions – there is an edge from node T to node U when transaction T is 

waiting for transaction U to release a lock.. Recall that the deadlock arose because transactions T and U both 

attempted to acquire an object held by the other. Therefore T waits for U and U waits for T. The dependency 

between transactions is indirect, via a dependency on objects. The diagram on the right shows the objects 

held by and waited for by transactions T and U. As each transaction can wait for only one object, the objects 

can be omitted from the wait-for graph – leaving the simple graph on the left. 

Deadlock prevention • One solution is to prevent deadlock. An apparently simple but not very good way to 

overcome the deadlock problem is to lock all of the objects used by a transaction when it starts. This would 

need to be done as a single atomic step so as to avoid deadlock at this stage. Such a transaction cannot run 

into deadlocks with other transactions, but this approach unnecessarily restricts access to shared resources. In 

addition, it is sometimes impossible to predict at the start of a transaction which objects will be used. This is 

generally the case in interactive applications, for the user would have to say in advance exactly which objects 

they were planning to use – this is inconceivable in browsing-style applications, which allow users to find 

objects they do not know about in advance. Deadlocks can also be prevented by requesting locks on objects 

in a predefined order, but this can result in premature locking and a reduction in concurrency. 

 Deadlock detection • Deadlocks may be detected by finding cycles in the wait-for graph. Having detected a 

deadlock, a transaction must be selected for abortion to break the cycle. 

The software responsible for deadlock detection can be part of the lock manager. It must hold a 
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representation of the wait-for graph so that it can check it for cycles from time to time. Edges are added to 

the graph and removed from the graph by the lock manager’s setLock and unLock operations.  

 

 

Transaction T Transaction U 
 

Locks Operations Locks  
    

 write lock A   

  b.deposit(200) write lock B 

    

 waits for U’s a.withdraw(200); waits for T’s 

 lock on B ••• lock on A 

(timeout elapses) •••  
T’s lock on A becomes 

vulnerable,   

unlock A, abort T   

  a.withdraw(200); write lock A 

   unlock A, B 
 

 

   

Note that when lock is shared, several edges may be added. An edge T o U is deleted whenever U releases 

a lock that T is waiting for and allows T to proceed. See Exercise 16.14 for a more detailed discussion of the 

implementation of deadlock detection. If a transaction shares a lock, the lock is not released, but the edges 

leading to a particular transaction are removed. 

The presence of cycles may be checked each time an edge is added, or less frequently to avoid unnecessary 

overhead. When a deadlock is detected, one of the transactions in the cycle must be chosen and then be 

aborted. The corresponding node and the edges involving it must be removed from the wait-for graph. This 

will happen when the aborted transaction has its locks removed. 

The choice of the transaction to abort is not simple. Some factors that may be taken into account are the age 

of the transaction and the number of cycles in which it is involved. 

 

 

For one object  Lock to be set  
  

read write commit   
     

Lock already set none OK OK OK 

 read OK OK wait 

 write OK wait – 

 commit wait wait – 
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transactions are aborted because deadlocks have occurred and a choice can be made as to which transaction 

to abort. 

Using lock timeouts, we can resolve the deadlock   as shown in the above Figure  in which the write lock for 

T on A becomes vulnerable after its timeout period. Transaction U is waiting to acquire a write lock on A. 

Therefore, T is aborted and it releases its lock on A, allowing U to resume and complete the transaction. 

When transactions access objects located in several different servers, the possibility of distributed deadlocks 

arises. In a distributed deadlock, the wait-for graph can involve objects at multiple locations 

 

Increasing concurrency in locking schemes 

Even when locking rules are based on the conflicts between read and write operations and the granularity at 

which they are applied is as small as possible, there is still some scope for increasing concurrency. We 

discuss two approaches that have been used to deal with this issue. In the first approach (two-version 

locking), the setting of exclusive locks is delayed until a transaction commits. In the second approach 

(hierarchic locks), mixed-granularity locks are used. 

Two-version locking • This is an optimistic scheme that allows one transaction to write tentative versions of 

objects while other transactions read from the committed versions of the same objects. read operations only 

wait if another transaction is currently committing the same object. This scheme allows more concurrency 

than read-write locks, but writing transactions risk waiting or even rejection when they attempt to commit. 

Transactions cannot commit their write operations immediately if other uncompleted transactions have read 

the same objects. Therefore, transactions that request to commit in such a situation are made to wait until the 

reading transactions have completed. Deadlocks may occur when transactions are waiting to commit. 

Therefore, transactions may need to be aborted when they are waiting to commit, to resolve deadlocks. 

This variation on strict two-phase locking uses three types of lock: a read lock, a write lock and a commit 

lock. Before a transaction’s read operation is performed, a read lock must be set on the object – the attempt 

to set a read lock is successful unless the object has a commit lock, in which case the transaction waits. 

Before a transaction’s 

 Lock hierarchy for the banking example 

 
Branch  

 
 
 
 

A B C Account 
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write operation is performed, a write lock must be set on the object – the attempt to set  
write lock is successful unless the object has a write lock or a commit lock, in which case the transaction 

waits. 

 

When the transaction coordinator receives a request to commit a transaction, it attempts to convert all that 

transaction’s write locks to commit locks. If any of the objects have outstanding read locks, the transaction 

must wait until the transactions that set these locks have completed and the locks are released. The 

compatibility of read, write and commit locks is shown in Figure 16.24. 

 

There are two main differences in performance between the two-version locking scheme and an ordinary 

read-write locking scheme. On the one hand, read operations in the two-version locking scheme are delayed 

only while the transactions are being committed, rather than during the entire execution of transactions – in 

most cases, the commit protocol takes only a small fraction of the time required to perform an entire 

transaction. On the other hand, read operations of one transaction can cause delays in committing other 

transactions. 

Hierarchic locks • In some applications, the granularity suitable for one operation is not appropriate for 

another operation. In our banking example, the majority of the operations require locking at the granularity of 

an account. The branchTotal operation is different – it reads the values of all the account balances and would 

appear to require ead lock on all of them. To reduce locking overhead, it would be useful to allow locks of 

mixed granularity to coexist. 

Gray [1978] proposed the use of a hierarchy of locks with different granularities. At each level, the setting of 

a parent lock has the same effect as setting all the equivalent child locks. This economizes on the number of 

locks to be set. In our banking example, the branch is the parent and the accounts are children (see Figure 

16.25). 

Mixed-granularity locks could be useful in a diary system in which the data could be structured with the 

diary for a week being composed of a page for each day and the  Lock hierarchy for a diary 

 

Week 
 
 
 

Monday Tuesday Wednesday Thursday Friday   
timeslots   

9:00–10:00 10:00–11:00 11:00–12:00  12:00–13:00  13:00–14:00  14:00–15:00  15:00–16:00 

 



  

 

Distributed Systems Page 189  

 

Lock compatibility table for hierarchic locks 

 

For one object  Lock to be set  

  read write I-read I-write 
      

Lock already set none OK OK OK OK 
 

read OK wait OK wait  

 write wait wait wait wait 

 I-read OK wait OK OK 

 I-write wait wait OK OK 
      

latter subdivided further into a slot for each hour of the day, as shown in Figure 16.26. The operation to view 

a week would cause a read lock to be set at the top of this hierarchy, whereas the operation to enter an 

appointment would cause a write lock to be set on a given time slot. The effect of a read lock on a week 

would be to prevent write operations on any of the substructures – for example, the time slots for each day in 

that week. 

 

In Gray’s scheme, each node in the hierarchy can be locked, giving the owner of the lock explicit access to 

the node and giving implicit access to its children. In our example,     a read-write lock on the branch 

implicitly read-write locks all the accounts. Before a child node is granted a read-write lock, an intention to 

read-write lock is set on the parent node and its ancestors (if any). The intention lock is compatible with other 

intention locks but conflicts with read and write locks according to the usual rules. Figure 16.27 gives the 

compatibility table for hierarchic locks. Gray also proposed a third type of intention lock – one that combines 

the properties of a read lock with an intention to write lock. 

 

In our banking example, the branchTotal operation requests a read lock on the branch, which implicitly sets 

read locks on all the accounts. A deposit operation needs to set a write lock on a balance, but first it attempts 

to set an intention to write lock on the branch. These rules prevent these operations running concurrently. 

 

Hierarchic locks have the advantage of reducing the number of locks when mixed-granularity locking is 

required. The compatibility tables and the rules for promoting locks are more complex. 

The mixed granularity of locks could allow each transaction to lock a portion whose size is chosen according 

to its needs. A long transaction that accesses many objects could lock the whole collection, whereas a short 

transaction can lock at finer granularity. 

The CORBA Concurrency Control Service supports variable-granularity locking with intention to read and 



  

 

Distributed Systems Page 190  

intention to write lock types. These can be used as described above to take advantage the opportunity to 

apply locks at differing granularities in hierarchically structured data. 

 

Optimistic concurrency control 
Lock maintenance represents an overhead that is not present in systems that do not support concurrent access 

to shared data. Even read-only transactions (queries), which cannot possibly affect the integrity of the data, 

must, in general, use locking in order to guarantee that the data being read is not modified by other 

transactions at the same time. But locking may be necessary only in the worst case. 

For example, consider two client processes that are concurrently incrementing the values of n objects. If the 

client programs start at the same time and run for about the same amount of time, accessing the objects in 

two unrelated sequences and using a separate transaction to access and increment each item, the chances that 

the two programs will attempt to access the same object at the same time are just 1 in n on average, so 

locking is really needed only once in every n transactions. 

The use of locks can result in deadlock. Deadlock prevention reduces concurrency severely, and therefore 

deadlock situations must be resolved either by the use of timeouts or by deadlock detection. Neither of these 

is wholly satisfactory for use in interactive programs. 

To avoid cascading aborts, locks cannot be released until the end of the transaction. This may reduce 

significantly the potential for concurrency. 

The alternative approach proposed by Kung and Robinson is ‘optimistic’ because it is based on the 

observation that, in most applications, the likelihood of two clients’ transactions accessing the same object is 

low. Transactions are allowed to proceed as though there were no possibility of conflict with other 

transactions until the client completes its task and issues a closeTransaction request. When a conflict arises, 

some transaction is generally aborted and will need to be restarted by the client. Each transaction has the 

following phases: 

Working phase: During the working phase, each transaction has a tentative version of each of the objects that 

it updates. This is a copy of the most recently committed version of the object. The use of tentative versions 

allows the transaction to abort (with no effect on the objects), either during the working phase or if it fails 

validation due to other conflicting transactions. read operations are performed immediately – if 

tentative version for that transaction already exists, a read operation accesses it; otherwise, it accesses the 

most recently committed value of the object. write operations record the new values of the objects as 

tentative values (which are invisible to other transactions). When there are several concurrent transactions, 

several different tentative values of the same object may coexist. In addition, two records are kept of the 
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objects accessed within a transaction: a read set containing the objects read by the transaction and a write set 

containing the objects written by the transaction. Note that as all read operations are performed on committed 

versions of the objects (or copies of them), dirty reads cannot occur. 

Validation phase: When the closeTransaction request is received, the transaction is validated to establish 

whether or not its operations on objects conflict with operations of other transactions on the same objects. If 

the validation is successful, then the transaction can commit. If the validation fails, then some form of 

conflict resolution must be used and either the current transaction or, in some cases, those with which it 

conflicts will need to be aborted. 

Update phase: If a transaction is validated, all of the changes recorded in its tentative versions are made 

permanent. Read-only transactions can commit immediately after passing validation. Write transactions are 

ready to commit once the tentative versions of the objects have been recorded in permanent storage. 

Validation of transactions • Validation uses the read-write conflict rules to ensure that the scheduling of a 

particular transaction is serially equivalent with respect to all other overlapping transactions – that is, any 

transactions that had not yet committed at the time this transaction started. To assist in performing validation, 

each transaction is assigned a transaction number when it enters the validation phase (that is, when the client 

issuescloseTransaction). If the transaction is validated and completes successfully, it retains this number; if it 

fails the validation checks and is aborted, or if the transaction is read only, the number is released for 

reassignment. Transaction numbers are integers assigned in ascending sequence; the number of a transaction 

therefore defines its position in time – a transaction always finishes its working phase after all transactions 

with lower numbers. That is, a transaction with the number Ti always precedes a transaction with the number 

Tj if i < j. (If the transaction number were to be assigned at the beginning of the working phase, then a 

transaction that reached the end of the working phase before one with a lower number would have to wait 

until the earlier one had completed before it could be validated.)The validation test on transaction Tv is based 

on conflicts between operations in pairs of transactions Ti and Tv. For a transaction Tv to be serializable with 

respect to an overlapping transaction Ti, their operations must conform to the following rules: 

 

Tv Ti Rule  

write read 1. Ti must not read objects written by Tv. 

read write 2. Tv must not read objects written by Ti. 

write write 3. 

Ti must not write objects written by Tv and 

  

   Tv must not write objects written by Ti. 
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As the validation and update phases of a transaction are generally short in duration compared with the 

working phase, a simplification can be achieved by making the rule that only one transaction may be in the 

validation and update phase at one time. When no two transactions may overlap in the update phase, rule 3 is 

satisfied. Note that this restriction on write operations, together with the fact that no dirty reads can occur, 

produces strict executions. To prevent overlapping, the entire validation and update phases can be 

implemented as a critical section so that only one client at a time can execute it. In order to increase 

concurrency, part of the validation and updating may be 

Figure 16.28  Validation of 
transactions              

 Working  Validation Update 

T
1 

                  
Earlier committed                   

 

T2 

                 transactions 
                     

                     

 

Transaction 

T3 
               

                 

       
Tv 

          
 being validated                 

                  
 

active1  
Later active  
transactions  active2  

 

 

implemented outside the critical section, but it is essential that the assignment of transaction numbers is 

performed sequentially. We note that at any instant, the current transaction number is like a pseudo-clock that 

ticks whenever a transaction completes successfully. 

The validation of a transaction must ensure that rules 1 and 2 are obeyed by testing for overlaps between the 

objects of pairs of transactions Tv and Ti. There are two forms of validation – backward and forward  

Backward validation checks the transaction undergoing validation with other preceding overlapping 

transactions – those that entered the validation phase before it. Forward validation checks the transaction 

undergoing validation with other later transactions, which are still active. 

Backward validation • As all the read operations of earlier overlapping transactions were performed before 

the validation of Tv started, they cannot be affected by the writes of the current transaction (and rule 1 is 

satisfied). The validation of transaction Tv checks whether its read set (the objects affected by the read 

operations of Tv) overlaps with any of the write sets of earlier overlapping transactions, Ti (rule 2). If there is 

any overlap, the validation fails. 

Let startTn be the biggest transaction number assigned (to some other committed transaction) at the time 
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when transaction Tv started its working phase and finishTn be the biggest transaction number assigned at the 

time when Tv entered the validation phase. The following program describes the algorithm for the validation 

of Tv: 

boolean valid = true; 

for (int Ti = startTn+1; Ti <= finishTn; Ti++){ 

if (read set of Tv intersects write set of Ti) valid = false; 

 

} 

 

Figure 16.28 shows overlapping transactions that might be considered in the validation of a transaction Tv. 

Time increases from left to right. The earlier committed transactions are T1, T2 and T3. T1 committed before 

Tv started. T2 and T 3 committed before Tv finished its working phase. StartTn + 1 = T2 and finishTn = T3. In 

backward validation, the read set of Tv must be compared with the write sets of T 2 and T3.In backward 

validation, the read set of the transaction being validated is compared with the write sets of other transactions 

that have already committed. Therefore, the only way to resolve any conflicts is to abort the transaction that 

is undergoing validation. 

In backward validation, transactions that have no read operations (only write operations) need not be 

checked. 

Optimistic concurrency control with backward validation requires that the write sets of old committed 

versions of objects corresponding to recently committed transactions are retained until there are no 

unvalidated overlapping transactions with which they might conflict. Whenever a transaction is successfully 

validated, its transaction number, startTn and write set are recorded in a preceding transactions list that is 

maintained by the transaction service. Note that this list is ordered by transaction number. In an environment 

with long transactions, the retention of old write sets of objects may be a problem. For example, in Figure 

16.28 the write sets of T1, T2, T3 and Tv must be retained until the active transaction active1 completes. Note 

that the although the active transactions have transaction identifiers, they do not yet have transaction 

numbers. 

Forward validation • In forward validation of the transaction Tv, the write set of Tv is compared with the 

read sets of all overlapping active transactions – those that are still in their working phase (rule 1). Rule 2 is 

automatically fulfilled because the active transactions do not write until after Tv has completed. Let the active 

transactions have (consecutive) transaction identifiers active1 to activeN. The following program describes the 
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algorithm for the forward validation of Tv: 

 

boolean valid = true; 

for (int Tid = active1; Tid <= activeN; Tid++){ 

if (write set of Tv intersects read set of Tid) valid = false; 

 

} 

 

In Figure 16.28, the write set of transaction Tv must be compared with the read sets of the transactions with 

identifiers active1 and active2. (Forward validation should allow for the fact that read sets of active 

transactions may change during validation and writing.) As the read sets of the transaction being validated 

are not included in the check, read-only transactions always pass the validation check. As the transactions 

being compared with the validating transaction are still active, we have a choice of whether to abort the 

validating transaction or to pursue some alternative way of resolving the conflict. Härder [1984] suggests 

several alternative strategies: 

Defer the validation until a later time when the conflicting transactions have finished. However, there is no 

guarantee that the transaction being validated will fare any better in the future. There is always the chance 

that further conflicting active transactions may start before the validation is achieved. 

Abort all the conflicting active transactions and commit the transaction being validated. 

Abort the transaction being validated. This is the simplest strategy but has the disadvantage that future 

conflicting transactions may be going to abort, in which case the transaction under validation has aborted 

unnecessarily. 

Comparison of forward and backward validation • We have already seen that forward validation allows 

flexibility in the resolution of conflicts, whereas backward validation allows only one choice – to abort the 

transaction being validated. In general, the read sets of transactions are much larger than the write sets. 

Therefore, backward validation compares a possibly large read set against the old write sets, whereas forward 

validation checks a small write set against the read sets of active transactions. We see that backward 

validation has the overhead of storing old write sets until they are no longer needed. On the other hand, 

forward validation has to allow for new transactions starting during the validation process. 

Starvation • When a transaction is aborted, it will normally be restarted by the client program. But in 

schemes that rely on aborting and restarting transactions, there is no guarantee that a particular transaction 
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will ever pass the validation checks, for it may come into conflict with other transactions for the use of 

objects each time it is restarted. The prevention of a transaction ever being able to commit is called 

starvation. 

Occurrences of starvation are likely to be rare, but a server that uses optimistic concurrency control 

must ensure that a client does not have its transaction aborted repeatedly. Kung and Robinson suggest 

that this could be done if the server detects a transaction that has been aborted several times. They 

suggest that when the server detects such a transaction it should be given exclusive access by the use of 

a critical section protected by a semaphore. 

Timestamp ordering  

 

In concurrency control schemes based on timestamp ordering, each operation in a transaction is validated 

when it is carried out. If the operation cannot be validated, the transaction is aborted immediately and can 

then be restarted by the client. Each transaction is assigned a unique timestamp value when it starts. The 

timestamp defines its position in the time sequence of transactions. Requests from transactions can be totally 

ordered according to their timestamps. The basic timestamp ordering rule is based on operation conflicts and 

is very simple: 

transaction’s request to write an object is valid only if that object was last read and written by earlier 

transactions. A transaction’s request to read an object is valid only if that object was last written by an earlier 

transaction. 

This rule assumes that there is only one version of each object and restricts access to one transaction at a 

time. If each transaction has its own tentative version of each object it accesses, then multiple concurrent 

transactions can access the same object. The timestamp ordering rule is refined to ensure that each 

transaction accesses a consistent set of versions of the objects. It must also ensure that the tentative versions 

of each object are committed in the order determined by the timestamps of the transactions that made them. 

This is achieved by transactions waiting, when necessary, for earlier transactions to complete their writes. 

The write operations may be performed after the closeTransaction operation has returned, without making 

the client wait. But the client must wait when read operations need to wait for earlier transactions to finish. 

This 

Figure 16.29 Operation conflicts for timestamp ordering 

 

Rule 
T

c 
T

i  

1. write read Tc must not write an object that has been read by any Ti where 
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Ti > Tc. 

   

This requires that Tc  • the maximum read timestamp of the 

object. 

2. write write 

Tc must not write an object that has been written by any Ti where 

Ti >Tc. 

   

This requires that Tc > the write timestamp of the committed 

object. 

3. read write 

Tc must not read an object that has been written by any Ti where Ti 

> Tc. 

   

This requires that Tc > the write timestamp of the committed 

object. 
    

 
 

cannot lead to deadlock, since transactions only wait for earlier ones (and no cycle could occur in the wait-for 

graph). 

Timestamps may be assigned from the server’s clock or, as in the previous section,‘pseudo-time’ may be 

based on a counter that is incremented whenever a timestamp value is issued. We defer until Chapter 17 the 

problem of generating timestamps when the transaction service is distributed and several servers are involved 

in a transaction. 

As usual, the write operations are recorded in tentative versions of objects and are invisible to other 

transactions until a closeTransaction request is issued and the transaction is committed. Every object has a 

write timestamp and a set of tentative versions, each of which has a write timestamp associated with it; each 

object also has a set of read timestamps. The write timestamp of the (committed) object is earlier than that of 

any of its tentative versions, and the set of read timestamps can be represented by its maximum member. 

Whenever a transaction’s write operation on an object is accepted, the server creates a new tentative version 

of the object with its write timestamp set to the transaction timestamp. A transaction’s read operation is 

directed to the version with the maximum write timestamp less than the transaction timestamp. Whenever a 

transaction’s read operation on an object is accepted, the timestamp of the transaction is added to its set of 

read timestamps. When a transaction is committed, the values of the tentative versions become the values of 

the objects, and the timestamps of the tentative versions become the timestamps of the corresponding objects. 

In timestamp ordering, each request by a transaction for a read or write operation on an object is checked to 

see whether it conforms to the operation conflict rules. A request by the current transaction Tc can conflict 

with previous operations done by other transactions, Ti, whose timestamps indicate that they should be later 

than Tc. These rules are shown in Figure 16.29, in which Ti > Tc means Ti is later than Tc and Ti < Tc means 
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Ti, is earlier than Tc.  

Timestamp ordering write rule: By combining rules 1 and 2 we get the following rule for deciding whether to 

accept a write operation requested by transaction Tc on object D: 

if (Tc  • maximum read timestamp on D && 

Tc > write timestamp on committed version of D) 

perform write operation on tentative version of D with write timestamp Tc else /* write is too 

late */ 

Abort transaction Tc 

 

If a tentative version with write timestamp Tc already exists, the write operation is addressed to 

it; otherwise, a new tentative version is created and given write timestamp Tc. Note that any write 

that ‘arrives too late’ is aborted – it is too late in the sense that a transaction with a later 

timestamp has already read or written the object. 

Figure 16.30 illustrates the action of a write operation by transaction T3 in cases where T3 

• maximum read timestamp on the object (the read timestamps are not shown). In cases (a) to 

(c), T3 > write timestamp on the committed version of the object and a tentative version with 

write timestamp T3 is inserted at the appropriate place in the list of tentative versions ordered by 

their transaction timestamps. In case (d), T3 < write timestamp on the committed version of the 

object and the transaction is aborted. 

Timestamp ordering read rule: By using rule 3 we arrive at the following rule for deciding whether to accept 

immediately, to wait or to reject a read operation requested by transaction Tc on object D: 

if ( Tc > write timestamp on committed version of D) { 

let Dselected be the version of D with the maximum write timestamp ð Tc if (Dselected is 

committed) 

perform read operation on the version Dselected 

else 

wait until the transaction that made version Dselected commits or aborts  then 

reapply the read rule 

} else 

Abort transaction Tc 
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Note: 

If transaction Tc has already written its own version of the object, this will be used. 

A read operation that arrives too early waits for the earlier transaction to complete. If the earlier transaction 

commits, then Tc will read from its committed version. If it aborts, then Tc will repeat the read rule (and 

select the previous version). This rule prevents dirty reads. 

A read operation that ‘arrives too late’ is aborted – it is too late in the sense that a transaction with a later 

timestamp has already written the object. 

Figure 16.31 illustrates the timestamp ordering read rule. It includes four cases labeled to (d), each of which 

illustrates the action of a read operation by transaction T3. In each case, a version whose write timestamp is 

less than or equal to T3 is selected. If such a version exists, it is indicated with a line. In cases (a) and (b) the 

read operation is directed to a committed version – in (a) it is the only version, whereas in (b) there is a tentative 

version belonging to a later transaction. In case (c) the read operation is directed to a tentative version and must wait 

until the transaction that made it commits or aborts. In case (d) there is no suitable version to read and transaction T3 is 

aborted. 
 
When a coordinator receives a request to commit a transaction, it will always be able to do so because all the 

operations of transactions are checked for consistency with those of earlier transactions before being carried 

out. The committed versions of each object must be created in timestamp order. Therefore, a coordinator 

sometimes needs to wait for earlier transactions to complete before writing all the committed versions of the 

objects accessed by a particular transaction, but there is no need for the client to wait. In order to make a 

transaction recoverable after a server crash, the tentative versions of objects and the fact that the transaction 

has committed must be written to permanent storage before acknowledging the client’s request to commit the 

transaction. 

 

Note that this timestamp ordering algorithm is a strict one – it ensures strict executions of transactions (see 

Section 16.2). The timestamp ordering read rule delays a transaction’s read operation on any object until all 

transactions that had previously written that object have committed or aborted. The arrangement to commit 

versions in order ensures that the execution of a transaction’s write operation on any object is delayed until 

all transactions that had previously written that object have committed or aborted. 

 Read operations and timestamps 
 

(a) T3 read (b) T3 read  

 

T
2 

read 
T2 T4 

read 
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proceeds proceeds 
    

 
Selected Time  Selected Time 

    

      

(c) T3 read  (d) T3 read   
 

 read waits  Transaction 

T1 T2 
T

4 aborts   
Selected Time Time                     

  
 

 

Flat and nested distributed transactions 
 

A client transaction becomes distributed if it invokes operations in several different servers. There are two 

different ways that distributed transactions can be structured: as flat transactions and as nested transactions. 

In a flat transaction, a client makes requests to more than one server. For example, in Figure 17.1(a), 

transaction T is a flat transaction that invokes operations on objects in servers X, Y and Z. A flat client 

transaction completes each of its requests before going on to the next one. Therefore, each transaction 

accesses servers’ objects sequentially. When servers use locking, a transaction can only be waiting for one 

object at a time. 

In a nested transaction, the top-level transaction can open subtransactions, and each subtransaction can open 

further subtransactions down to any depth of nesting. Figure 17.1(b) shows a client transaction T that opens 

two subtransactions, T1 and T2, which access objects at servers X and Y. The subtransactions T1 and T2 open 

further subtransactions T11, T 12, T21, and T22, which access objects at servers M, N and P. In the nested 

case, subtransactions at the same level can run concurrently, so T1 and T2 are concurrent, and as they 

invoke objects in different servers, they can run in parallel. The four subtransactions T11, T12, T21 and T22 

also run concurrently 

 

 

 
 

   



  

 

Distributed Systems Page 200  

 

Consider a distributed transaction in which a client transfers $10 from account A to C and then transfers $20 

from B to D. Accounts A and B are at separate servers X and Y and accounts C and D are at server Z. If this 

transaction is structured as a set of four nested transactions, as shown in Figure 17.2, the four requests (two 

deposits and two withdraws) can run in parallel and the overall effect can be achieved with better 

performance than a simple transaction in which the four operations are invoked sequentially. 

 

Atomic commit protocols: 

A transaction comes to an end when the client requests that it be committed or aborted. A simple way to 

complete the transaction in an atomic manner is for the coordinator to communicate the commit or abort 

request to all of the participants in the transaction and to keep on repeating the request until all of them have 

acknowledged that they have carried it out. This is an example of a one-phase atomic commit protocol. 

This simple one-phase atomic commit protocol is inadequate, though, because it does not allow a server to 

make a unilateral decision to abort a transaction when the client requests a commit. Reasons that prevent a 

server from being able to commit its part of a transaction generally relate to issues of concurrency control. 

For example, if locking is in use, the resolution of a deadlock can lead to the aborting of a transaction without 

the client being aware unless it makes another request to the server. Also if optimistic concurrency control is 

in use, the failure of validation at a server would cause it to decide to abort the transaction. Finally, the 

coordinator may not know if a server has crashed and been replaced during the progress of a distributed 

transaction – such a server will need to abort the transaction.The two-phase commit protocol is designed to allow 

any participant to abort its part of a transaction. Due to the requirement for atomicity, if one part of a transaction is 

aborted, then the whole transaction must be aborted. In the first phase of the protocol, each participant votes for the 

transaction to be committed or aborted. Once a participant has voted to commit a transaction, it is not allowed to abort 

it. Therefore, before a participant votes to commit a transaction, it must ensure that it will eventually be able to carry 

out its part of the commit protocol, even if it fails and is replaced in the interim. A participant in a transaction is said to 



  

 

Distributed Systems Page 201  

be in a prepared state for a transaction if it will eventually be able to commit it. To make sure of this, each participant 

saves in permanent storage all of the objects that it has altered in the transaction, together with its status – prepared. 
 
In the second phase of the protocol, every participant in the transaction carries out the joint decision. If any 

one participant votes to abort, then the decision must be to abort the transaction. If all the participants vote to 

commit, then the decision is to commit the transaction. 

The problem is to ensure that all of the participants vote and that they all reach the same decision. This is  

fairly simple if no errors occur, but the protocol must work correctly even when some of the servers fail, 

messages are lost or servers are temporarily unable to communicate with one another. 

The two-phase commit protocol 
 

During the progress of a transaction, there is no communication between the coordinator and the participants 

apart from the participants informing the coordinator when they join the transaction. A client’s request to 

commit (or abort) a transaction is directed to the coordinator. If the client requests abortTransaction, or if the 

transaction is aborted by one of the participants, the coordinator informs all participants immediately. It is 

when the client asks the coordinator to commit the transaction that the two-phase commit protocol comes 

into use. 

In the first phase of the two-phase commit protocol the coordinator asks all the participants if they are 

prepared to commit; in the second, it tells them to commit (or abort) the transaction. If a participant can 

commit its part of a transaction, it will agree as soon as it has recorded the changes it has made (to the 

objects) and its status in 

Figure 17.4 Operations for two-phase commit protocol 
 

canCommit?(trans)o Yes / No  
Call from coordinator to participant to ask whether it can commit a transaction.  
Participant replies with its vote. 

 
doCommit(trans)  

Call from coordinator to participant to tell participant to commit its part of a 

transaction. 
 

doAbort(trans)  
Call from coordinator to participant to tell participant to abort its part of a transaction. 

 
haveCommitted(trans, participant)  

Call from participant to coordinator to confirm that it has committed the transaction. 
 

getDecision(trans) o Yes / No  
Call from participant to coordinator to ask for the decision on a transaction when it has voted 

Yes but has still had no reply after some delay. Used to recover from server crash or delayed 

messages.  
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permanent storage and is therefore prepared to commit. The coordinator in a distributed transaction 

communicates with the participants to carry out the two-phase commit protocol by means of the operations 

summarized in Figure 17.4. The methods canCommit, doCommit and doAbort are methods in the interface of 

the participant. The methods haveCommitted and getDecision are in the coordinator interface. 

The two-phase commit protocol consists of a voting phase and a completion phase, as shown in Figure 17.5. 

By the end of step 2, the coordinator and all the participants that voted Yes are prepared to commit. By the 

end of step 3, the transaction is effectively completed. At step 3a the coordinator and the participants are 

committed, so the coordinator can report a decision to commit to the client. At 3b the coordinator reports a 

decision to abort to the client. 

At step 4 participants confirm that they have committed so that the coordinator knows when the information 

it has recorded about the transaction is no longer needed. 

This apparently straightforward protocol could fail due to one or more of the servers crashing or due to a 

breakdown in communication between the servers. To deal with the possibility of crashing, each server saves 

information relating to the two-phase commit protocol in permanent storage. This information can be 

retrieved by a new process that is started to replace a crashed server. The recovery aspects of distributed 

transactions are discussed in Section 17.6. 

The exchange of information between the coordinator and participants can fail when one of the servers 

crashes, or when messages are lost. Timeouts are used to avoid processes blocking forever. When a timeout 

occurs at a process, it must take an appropriate action. To allow for this the protocol includes a timeout action 

for each step at which a process may block. These actions are designed to allow for the fact that in an 

asynchronous system, a timeout may not necessarily imply that a server has failed 

The two-phase commit protocol 
 

Phase 1 (voting phase): 

 The coordinator sends a canCommit? request to each of the participants in the transaction. 

 When a participant receives a canCommit? request it replies with its vote (Yes or No) to the 

coordinator. Before voting Yes, it prepares to commit by saving objects in permanent 

storage. If the vote is No, the participant aborts immediately. 

Phase 2 (completion according to outcome of vote): 

 The coordinator collects the votes (including its own). 

(a)If there are no failures and all the votes are Yes, the coordinator decides to commit the 
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transaction and sends a doCommit request to each of the participants. 

(b)Otherwise, the coordinator decides to abort the transaction and sends doAbort requests to 

all participants that voted Yes. 

 Participants that voted Yes are waiting for a doCommit or doAbort request from the 

coordinator. When a participant receives one of these messages it acts accordingly and, in 

the case of commit, makes a haveCommitted call as confirmation to the coordinator. 

Concurrency control in distributed transactions 

Locking 

In a distributed transaction, the locks on an object are held locally (in the same server). The local lock 

manager can decide whether to grant a lock or make the requesting transaction wait. However, it cannot 

release any locks until it knows that the transaction has been committed or aborted at all the servers involved 

in the transaction. When locking is used for concurrency control, the objects remain locked and are 

unavailable for other transactions during the atomic commit protocol, although an aborted transaction 

releases its locks after phase 1 of the protocol.  

As lock managers in different servers set their locks independently of one another, it is possible that different 

servers may impose different orderings on transactions. Consider the following interleaving of transactions T 

and U at servers X and Y: 

 T  U  
     

write(A) at X locks A   

  write(B) at Y locks B 

read(B) at Y waits for U   

  read(A) at X waits for T 
     

 

The transaction T locks object A at server X, and then transaction U locks object B at server Y. After 

that, T tries to access B at server Y and waits for U’s lock. Similarly, transaction U tries to access A at 

server X and has to wait for T’s lock. Therefore, we have T before U in one server and U before T in 

the other. These different orderings can lead to cyclic dependencies between transactions, giving rise 

to a distributed deadlock situation. The detection and resolution of distributed deadlocks is discussed 

in Section 17.5. When a deadlock is detected, a transaction is aborted to resolve the deadlock. In this 

case, the coordinator will be informed and will abort the transaction at the participants involved in the 

transaction. 

Timestamp ordering concurrency control 
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In a single server transaction, the coordinator issues a unique timestamp to each transaction when it starts. 

Serial equivalence is enforced by committing the versions of objects in the order of the timestamps of 

transactions that accessed them. In distributed transactions, we require that each coordinator issue globally 

unique timestamps. A globally unique transaction timestamp is issued to the client by the first coordinator 

accessed by a transaction. The transaction timestamp is passed to the coordinator at each server whose 

objects perform an operation in the transaction. 

 

The servers of distributed transactions are jointly responsible for ensuring that they are performed in a 

serially equivalent manner. For example, if the version of an object accessed by transaction U commits after 

the version accessed by T at one server, if T and U access the same object as one another at other servers they 

must commit them in the same order. To achieve the same ordering at all the servers, the coordinators must 

agree as to the ordering of their timestamps. A timestamp consists of a <local timestamp, server-id> pair. 

The agreed ordering of pairs of timestamps is based on a comparison in which the server-id part is less 

significant. 

The same ordering of transactions can be achieved at all the servers even if their local clocks are not 

synchronized. However, for reasons of efficiency it is required that the timestamps issued by one coordinator 

be roughly synchronized with those issued by the other coordinators. When this is the case, the ordering of 

transactions generally corresponds to the order in which they are started in real time. Timestamps can be kept 

roughly synchronized by the use of synchronized local physical clocks  

When timestamp ordering is used for concurrency control, conflicts are resolved as each operation is 

performed using the rules given in Section 16.6. If the resolution of a conflict requires a transaction to be  

aborted, the coordinator will be informed and it will abort the transaction at all the participants. Therefore 

any transaction that reaches the client request to commit should always be able to commit, and participants in 

the two-phase commit protocol will normally agree to commit. The only situation in which a participant will 

not agree to commit is if it has crashed during the transaction. 

 

 
Distributed deadlocks 
 
With deadlock detection schemes, a transaction is aborted only when it is involved in a deadlock. Most 

deadlock detection schemes operate by finding cycles in the transaction wait-for graph. In a distributed 
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system involving multiple servers being accessed by multiple transactions, a global 

 
 

 

U V W  
    

d.deposit(10) lock D   

 b.deposit(10) lock B  

a.deposit(20) lock A at Y  

 at X   

  c.deposit(30) lock C 

b.withdraw(30

) wait at Y  at Z 

 
c.withdraw(20

) wait at Z  

  
a.withdraw(20

) wait at X 
    

wait-for graph can in theory be constructed from the local ones. There can be a cycle in the global wait-for 

graph that is not in any single local one – that is, there can be a distributed deadlock. Recall that the wait-for 

graph is a directed graph in which nodes represent transactions and objects, and edges represent either an 

object held by a transaction or a transaction waiting for an object. There is a deadlock if and only if there is a 

cycle in the wait-for graph. 

Figure 17.12 shows the interleavings of the transactions U, V and W involving the objects A and B managed 

by servers X and Y and objects C and D managed by server Z. 

The complete wait-for graph in Figure 17.13(a) shows that a deadlock cycle consists of alternate edges, 

which represent a transaction waiting for an object and an object held by a transaction. As any transaction 

can only be waiting for one object at a time, objects can be left out of wait-for graphs, as shown in Figure 

17.13(b). 

Detection of a distributed deadlock requires a cycle to be found in the global transaction wait-for graph that 

is distributed among the servers that were involved in the transactions. Local wait-for graphs can be built by 

the lock manager at each server, as discussed in Chapter 16. In the above example, the local wait-for graphs 

of the servers are: 

 server Y: U o V (added when U requests b.withdraw(30)) 

server Z: V o W (added when V requests c.withdraw(20)) 

server X: W o U (added when W requests a.withdraw(20)) 

As the global wait-for graph is held in part by each of the several servers involved, communication between 



  

 

Distributed Systems Page 206  

these servers is required to find cycles in the graph. 

A simple solution is to use centralized deadlock detection, in which one server takes on the role of 

global deadlock detector. From time to time, each server sends the latest copy of its local wait-for 

graph to the global deadlock detector, which amalgamates the information in the local graphs in order 

to construct a global wait-for graph. The global deadlock detector checks for cycles in the global 

wait-for graph When it finds a cycle, it makes a decision on how to resolve the deadlock and tells the 

servers which transaction to abort. 

Centralized deadlock detection is not a good idea, because it depends on a single server to carry it out. It 

suffers from the usual problems associated with centralized solutions in distributed systems – poor 

availability, lack of fault tolerance and no ability to scale. In addition, the cost of the frequent transmission of 

local wait-for graphs is high. If the global graph is collected less frequently, deadlocks may take longer to be 

detected. 

Phantom deadlocks  •  A deadlock that is ‘detected’ but is not really a deadlock is called phantom deadlock. 

In distributed deadlock detection, information about wait-for relationships between transactions is 

transmitted from one server to another. If there is a deadlock, the necessary information will eventually be 

collected in one place and a cycle will be detected. As this procedure will take some time, there is a chance 

that one of the transactions that holds a lock will meanwhile have released it, in which case the deadlock will 

no longer exist. 

Transaction recovery 

The atomic property of transactions requires that all the effects of committed transactions and none of 

the effects of incomplete or aborted transactions are reflected in the objects they accessed. This 

property can be described in terms of two aspects: durability and failure atomicity. Durability requires 

that objects are saved in permanent storage and will be available indefinitely thereafter. Therefore an 

acknowledgement of a client’s commit request implies that all the effects of the transaction have been 

recorded in permanent storage as well as in the server’s (volatile) objects. Failure atomicity requires 

that effects of transactions are atomic even when the server crashes. Recovery is concerned with 

ensuring that a server’s objects are durable and that the service provides failure atomicity. 

Although file servers and database servers maintain data in permanent storage, other kinds of servers 

of recoverable objects need not do so except for recovery purposes. In this chapter, we assume that 

when a server is running it keeps all of its objects in its volatile memory and records its committed 

objects in a recovery file or files. Therefore recovery consists of restoring the server with the latest 
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committed versions of its objects from permanent storage. Databases need to deal with large volumes 

of data. They generally hold the objects in stable storage on disk with a cache in volatile memory. 

The requirements for durability and failure atomicity are not really independent of one another and 

can be dealt with by a single mechanism – the recovery manager. The tasks of a recovery manager 

are: 

 to save objects in permanent storage (in a recovery file) for committed transactions; 

 to restore the server’s objects after a crash; 

 to reorganize the recovery file to improve the performance of recovery; 

 to reclaim storage space (in the recovery file). 

In some cases, we require the recovery manager to be resilient to media failures. Corruption during a 

crash, random decay or a permanent failure can lead to failures of the recovery file, which can result 

in some of the data on the disk being lost. In such cases we need another copy of the recovery file. 

Stable storage, which is implemented so as to be very unlikely to fail by using mirrored disks or 

copies at a different location may be used for this purpose. 

Intentions list • Any server that provides transactions needs to keep track of the objects accessed by clients’ 

transactions. Recall from Chapter 16 that when a client opens a transaction, the server first contacted 

provides a new transaction identifier and  

Types of entry in a recovery file 

 

Type of entry Description of contents of entry 
  

Object A value of an object. 

 
Transaction identifier, transaction status (prepared, 

committed, 

Transaction 

status 

aborted) and other status values used for the two-phase 

commit 

 protocol. 

 
Transaction identifier and a sequence of intentions, each of 

which 

Intentions list consists of <objectID, Pi>, where Pi is the position in the recovery 

 file of the value of the object. 

 

returns it to the client. Each subsequent client request within a transaction up to anincluding the 

commit or abort request includes the transaction identifier as an argument. During the progress 

of a transaction, the update operations are applied to a private set of tentative versions of the 

objects belonging to the transaction. 
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At each server, an intentions list is recorded for all of its currently active transactions – an intentions list of a 

particular transaction contains a list of the references and the values of all the objects that are altered by that 

transaction. When a transaction is committed, that transaction’s intentions list is used to identify the objects it 

affected. The committed version of each object is replaced by the tentative version made by that transaction, 

and the new value is written to the server’s recovery file. When a transaction aborts, the server uses the 

intentions list to delete all the tentative versions of objects made by that transaction. 

Recall also that a distributed transaction must carry out an atomic commit protocol before it can be 

committed or aborted. Our discussion of recovery is based on the two-phase commit protocol, in which all 

the participants involved in a transaction first say whether they are prepared to commit and later, if all the 

participants agree, carry out the actual commit actions. If the participants cannot agree to commit, they must 

abort the transaction. 

At the point when a participant says it is prepared to commit a transaction, its recovery manager must have 

saved both its intentions list for that transaction and the objects in that intentions list in its recovery file, so 

that it will be able to carry out the commitment later, even if it crashes in the interim. 

When all the participants involved in a transaction agree to commit it, the coordinator informs 

the client and then sends messages to the participants to commit their part of the transaction. 

Once the client has been informed that a transaction has committed, the recovery files of the 

participating servers must contain sufficient information to ensure that the transaction is 

committed by all of the servers, even if some of them crash between preparing to commit and 

committing. 

Entries in recovery file • To deal with recovery of a server that can be involved in 

distributedtransactions, further information in addition to the values of the objects is stored 

in the recovery file. This information concerns the status of each transaction –              

whether it is committed, aborted or prepared to commit 

Logging: In the logging technique, the recovery file represents a log containing the history of all the 

transactions performed by a server. The history consists of values of objects, transaction status entries and 

transaction intentions lists. The order of the entries in the log reflects the order in which transactions have 

prepared, committed and aborted at that server. In practice, the recovery file will contain a recent snapshot of 

the values of all the objects in the server followed by a history of transactions postdating the snapshot. 

During the normal operation of a server, its recovery manager is called whenever a transaction prepares to 
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commit, commits or aborts a transaction. When the server is prepared to commit a transaction, the recovery 

manager appends all the objects in its intentions list to the recovery file, followed by the current status of that 

transaction (prepared) together with its intentions list. When a transaction is eventually committed or 

aborted, the recovery manager appends the corresponding status of the transaction to its recovery file. 

It is assumed that the append operation is atomic in the sense that it writes one or more complete entries to 

the recovery file. If the server fails, only the last write can be incomplete. To make efficient use of the disk, 

several subsequent writes can be buffered and then written to disk as a single write. An additional advantage 

of the logging technique is that sequential writes to disk are faster than writes to random locations. 

After a crash, any transaction that does not have a committed status in the log is aborted. Therefore when a 

transaction commits, its committed status entry must be forced to the log – that is, written to the log together 

with any other buffered entries. The recovery manager associates a unique identifier with each object so that 

the successive versions of an object in the recovery file may be associated with the server’s objects. For 

example, a durable form of a remote object reference such as a CORBA persistent reference will do as an 

object identifier Figure 17.19 illustrates the log mechanism for the banking service transactions T and U in 

Figure 16.7. The log was recently reorganized, and entries to the left of the double line represent a snapshot 

of the values of A, B and C before transactions T and U started. In this diagram, we use the names A, B and C 

as unique identifiers for objects. We show the situation when transaction T has committed and transaction U 

has prepared but not committed. When transaction T prepares to commit, the values of objects A and B are 

written at positions P1 and P2 in the log, followed by a prepared transaction status entry for T with its 

intentions list (< A, P1 >, < B, P2 >). When transaction T commits, a committed transaction status entry for T 

is put at position P4. Then when transaction U prepares to commit, the values of objects C and B are written 

at positions P5 and P6 in the log, followed by a prepared transaction status entry for U with its intentions list 

(< C, P5 >, < B, P6 >). 
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         of log 

Recovery of objects • When a server is replaced after a crash, it first sets default initial values for its objects 

and then hands over to its recovery manager. The recovery manager is responsible for restoring the server’s 

objects so that they include all the effects of the committed transactions performed in the correct order and 

none of the effects of incomplete or aborted transactions. 

The most recent information about transactions is at the end of the log. There are two approaches to restoring 

the data from the recovery file. In the first, the recovery manager starts at the beginning and restores the 

values of all of the objects from the most recent checkpoint (discussed in the next section). It then reads in 

the values of each of the objects, associates them with their transaction’s intentions lists and for committed 

transactions replaces the values of the objects. In this approach, the transactions are replayed in the order in 

which they were executed and there could be a large number of them. In the second approach, the recovery 

manager will restore a server’s objects by ‘reading the recovery file backwards’. The recovery file has been 

structured so that there is a backwards pointer from each transaction status entry to the next. The recovery 

manager uses transactions with committed status to restore those objects that have not yet been restored. It 

continues until it has restored all of the server’s objects. This has the advantage that each object is restored 

once only To recover the effects of a transaction, a recovery manager gets the corresponding intentions list 

from its recovery file. The intentions list contains the identifiers and positions in the recovery file of values of 

all the objects affected by the transaction. 

If the server fails at the point reached in Figure 17.19, its recovery manager will recover the objects as 

follows. It starts at the last transaction status entry in the log (at P7) and concludes that transaction U has not 

committed and its effects should be ignored. It then moves to the previous transaction status entry in the log 

(at P4) and concludes that transaction T has committed. To recover the objects affected by transaction T, it 

moves to the previous transaction status entry in the log (at P3) and finds the intentions list for T (< A, P1 >, < 

B, P2 >). It then restores objects A and B from the values at P1 and P2. As it has not yet restored C, it moves 

back to P0, which is a checkpoint, and restores C. 
 
To help with subsequent reorganization of the recovery file, the recovery manager notes all the prepared 

transactions it finds during the process of restoring the server’s objects. For each prepared transaction, it adds 

an aborted transaction status to the recovery file. This ensures that in the recovery file, every transaction is 

eventually shown as either committed or aborted. 

The server could fail again during the recovery procedures. It is essential that recovery be idempotent, in the 

sense that it can be done any number of times with the same effect. This is straightforward under our 

assumption that all the objects are restored to volatile memory. In the case of a database, which keeps its 
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objects in permanent storage with a cache in volatile memory, some of the objects in permanent storage will 

be out of date when a server is replaced after a crash. Therefore the recovery manager has to restore the 

objects in permanent storage. If it fails during recovery, the partially restored objects will still be there. This 

makes idempotence a little harder to achieve. 

Recovery of the two-phase commit protocol In a distributed transaction, each server keeps its own 

recovery file. The recovery management described in the previous section must be extended to deal with any 

transactions that are performing the two-phase commit protocol at the time when a server fails. The recovery 

managers use two new status values for this purpose: done and uncertain. These status values are shown in 

Figure 17.6. A coordinator uses committed to indicate that the outcome of the vote is Yes and done to indicate 

that the two-phase commit protocol is complete. A participant uses uncertain to indicate that it has voted Yes 

but does not yet know the outcome of the vote. Two additional types of entry allow a coordinator to record a 

list of participants and a participant to record its coordinator: 

 

Type of entry Description of contents of entry 
  

Coordinator Transaction identifier, list of participants 

Participant Transaction identifier, coordinator 
  

In phase 1 of the protocol, when the coordinator is prepared to commit (and has already added a prepared 

status entry to its recovery file), its recovery manager adds a coordinator entry to its recovery file. Before a 

participant can vote Yes, it must have already prepared to commit (and must have already added a prepared 

status entry to its recovery file). When it votes Yes, its recovery manager records a participant entry and adds 

an uncertain transaction status to its recovery file as a forced write. When a participant votes No, it adds an 

abort transaction status to its recovery file. 

 

In phase 2 of the protocol, the recovery manager of the coordinator adds either a committed or an aborted 

transaction status to its recovery file, according to the decision. This must be a forced write (that is, it is 

written immediately to the recovery file). Recovery managers of participants add a commit or abort 

transaction status to their recovery files according to the message received from the coordinator. When a 

coordinator has received a confirmation from all of its participants, its recovery manager adds a done 

transaction status to its recovery file – this need not be forced. The done status entry is not part of the 

protocol but is used when the recovery file is reorganized. Figure 17.21 shows the entries in a log for 

transaction T, in which the server played the coordinator role, and for transaction U, in which the server 

played the participant role. For both transactions, the prepared transaction status entry comes first. In the 
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case of a coordinator it is followed by a coordinator entry and a committed transaction status entry. The done 

transaction status entry is not shown in Figure 17.21. In the case of a participant, the prepared transaction 

status entry is followed by a participant entry whose state is uncertain and then a committed or aborted 

transaction status entry. 

Figure 17.21  Log with entries relating to two-phase commit protocol   
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When a server is replaced after a crash, the recovery manager has to deal with the two-phase commit protocol 

in addition to restoring the objects. For any transaction where the server has played the coordinator role, it 

should find a coordinator entry and a set of transaction status entries. For any transaction where the server 

played the participant role, it should find a participant entry and a set of transaction status entries. In both 

cases, the most recent transaction status entry – that is, the one nearest the end of the log – determines the 

transaction status at the time of failure. The action of the recovery manager with respect to the two-phase 

commit protocol for any transaction depends on whether the server was the coordinator or a participant and 

on its status at the time of failure, as shown in Figure 17.22. 

Reorganization of recovery file • Care must be taken when performing a checkpoint to ensure that 

coordinator entries of transactions without status done are not removed from the recovery file. These entries 

must be retained until all the participants have confirmed that they have completed their transactions. Entries 

with status done may be discarded. Participant entries with transaction state uncertain must also be retained. 

 

Recovery of nested transactions • In the simplest case, each subtransaction of a nested transaction accesses 

a different set of objects. As each participant prepares to commit during the two-phase commit protocol, it 

writes its objects and intentions lists to the local recovery file, associating them with the transaction identifier 

of the top-level transaction. Although nested transactions use a special variant of the two-phase commit 

protocol, the recovery manager uses the same transaction status values as for flat transactions. 

However, abort recovery is complicated by the fact that several subtransactions at the same and different 

levels in the nesting hierarchy can access the same object. Section 16.4 describes a locking scheme in which 

parent transactions inherit locks and subtransactions acquire locks from their parents. The locking scheme 

forces parent transactions and subtransactions to access common data objects at different times and ensures 
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that accesses by concurrent subtransactions to the same objects must be serialized. 

Objects that are accessed according to the rules of nested transactions are made recoverable by providing 

tentative versions for each subtransaction. The relationship between the tentative versions of an object used 

by the subtransactions of a nested transaction is similar to the relationship between the locks. To support 

recovery from aborts, the server of an object shared by transactions at multiple levels provides a stack of 

tentative versions – one for each nested transaction to use. 


